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ABSTRACT / The quality of scientific information in policy- 
relevant fields of research is difficult to assess, and quality 
control in these important areas is correspondingly difficult to 

maintain. Frequently there are insufficient high-quality mea- 
surements for the presentation of the statistical uncertainty in 
the numerical estimates that are crucial to policy decisions. 
We propose and develop a grading system for numerical 
estimates that can deal with the full range of data quality-- 
from statistically valid estimates to informed guesses. By ana- 
lyzing the underlying quality of numerical estimates, summa- 
rized as spread and grade, we are able to provide simple 
rules whereby input data can be coded for quality, and these 
codings carried through arithmetical calculations for assess- 
ing the quality of model results. For this we use the NUSAP 
(numeral, unit, spread, assessment, pedigree) notational sys- 
tem. It allows the more quantitative and the more qualitative 
aspects of data uncertainty to be managed separately. By 
way of example, we apply the system to an ecosystem valu- 
ation study that used several different models and data of 
widely varying quality to arrive at a single estimate of the 
economic value of wetlands. The NUSAP approach illustrates 
the major sources of uncertainty in this study and can guide 
new research aimed at the improvement of the quality of out- 
puts and the efficiency of the procedures. 

The Problem of Data Quality in 
Policy-Relevant Research 

In scientific research, as in any other sphere of  ac- 
tivity, the maintenance of  the quality of  products is crit- 
ical for their effective use. In matured fields of  tradi- 
tional science, quality control is exercised informally by 
the competent practitioners (Ravetz 1971). In most sci- 
entific studies, the scientists actually doing the analysis 
have a good working understanding of the inherent 
quality of  their measurements and results, but there is 
no accepted method to communicate this knowledge of  
data quality to potential users of the information. When 
the results of  research are intended to be used as inputs 
to public policy decisions, the users of  this information 
must either be knowledgeable in the details of the re- 
search methods or accept the results with no idea of  
their quality. Usually, they lack the knowledge for per- 
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forming their own assessment of  quality and must do 
without. As a result, the policy process on very many 
issues is impaired. This deficiency is recognized in the 
courts, as when expert witnesses are used for technical 
questions, but the traditional criteria for the quality of  
personal testimony do not apply to scientific informa- 
tion and so the courts generally pursue the vain hope of  
scientific certainty. Worse yet, in the absence of a qual- 
ity-assessment system, these deficiencies are largely un- 
recognized and their consequences are difficult to esti- 
mate. Grades for quality are routinely assigned in innu- 
merable spheres of activity in our society; yet in the case 
of information, one of the most sensitive products we 
have, there are no standard systems for grading and 
hence no means for a socially effective system of quality 
control. This article presents a system aimed at rectify- 
ing this situation. 

The  standard techniques of  statistics were developed 
to handle a different aspect of  uncertainty. They as- 
sume that uncertainty is due to real, precisely measured 
variation in the populations being sampled. They gen- 
erally assume that we have a probability distribution to 
work with, without asking how well we know that dis- 
tribution. This article concentrates on the issue of  how 
well we know the distribution (its quality) and how we 
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may communicate that knowledge. The  standard statis- 
tical assumptions are justifiable in the case of  the tradi- 
tional experimental or field sciences, but the data avail- 
able in policy-related research is frequently so scattered 
and coarse that refined mathematical manipulations do 
not possess much genuine meaning when applied to 
them. The  more basic problem is that of  partitioning of  
the total uncertainty into that due to real variation in 
the population (statistical uncertainty) and that due to 
errors in measurement  (data quality). 

The  achievement of  scientific work of  high quality 
requires the deployment of  sophisticated craft skills, as 
well as the motivating force of  commitment and morale. 
Therefore,  a full specification of quality would be as 
complex and subtle a task as the research itself. Fortu- 
nately, f rom the inexpert user's point of  view, the rele- 
vant aspects of  quality depend more on the product 
than on the process. Since the product of  research is 
information that has certain knowledge as its ideal, we 
can assess quality by that yardstick. The  incompleteness 
of  certainty (or the inevitable uncertainty) of  scientific 
information can be used to define a system of quanti- 
tative estimates and qualitative grades. By this means 
the various aspects of  the uncertainty, and hence of the 
quality, of  scientific information can be described. 

No scientific activity is free from uncertainty; we may 
say that the key to a science being matured in its success 
in the recognition, communication, and control of  the 
various sorts of  uncertainty that affect its results and 
predictions. These include inexactness, as expressed by 
significant digits, unreliability as expressed in systematic 
error, and others. No amount  of  sophisticated appara- 
tus and computer  power can replace theoretical under- 
standing of the problems of uncertainty or the practical 
skills of  controlling and communicating it. 

When quantitative information is used to provide 
inputs for the policy process, as in the case of  indicators 
in the social and environmental fields, the scientist's 
problems of  management  and communication of un- 
certainty are severe. First, the original data are rarely as 
well controlled as in the laboratory. Well-structured 
theories, normally expected to be available in basic or 
applied science, are conspicuously absent in policy-re- 
lated research. Furthermore,  such research is interdis- 
ciplinary, involving fields of  varying states of  maturity 
and with very different sorts of  practice in their theo- 
retical, experimental, and social dimensions. Scientists 
must use inputs f rom fields they do not know inti- 
mately, so they cannot make the same sensitive judg- 
ments of  quafity that they do in their own subject. The  
result is that the quality control on the research process 
is diluted; the quality assurance of results is weaker; and 
they command less confidence among users. 

The  problems of  uncertainty in policy-related re- 
search are further increased in its public dimension. 
Science is judged by the public (including decision mak- 
ers) by its performance in such sensitive areas as haz- 
ardous wastes, radioactive fallout, food additives, and 
reproduction engineering. All these involve much un- 
certainty and also inescapable social and ethical aspects. 
Simplicity and precision in predictions, or even in the 
assignment of  safe limits, are not feasible; yet policy 
makers tend to expect straightforward information as 
inputs to their own decision-making process. They want 
their statistical indicators to provide them with cer- 
tainty. 

In such circumstances, the maintenance of  confi- 
dence in science among policy makers and the general 
public becomes increasingly difficult. The  issue mani- 
fests itself at several levels. The  simplest is in the rep- 
resentation of uncertainty in quantitative estimates. For 
example, in risk assessments, the scientist who advises 
policy makers knows that a prediction like a one-in-a- 
million chance of a serious accident should be qualified 
with statements about the many sorts of  uncertainty, so 
as to caution any user about the limits of  reliability of  
the numerical assertions. I f  these are all expressed in 
prose, the statement becomes tedious and incompre- 
hensible to the lay users; if they are omitted or even 
given in some simple statistical representation, then the 
same advisor can be accused of conveying a certainty 
that is not warranted by the facts. Lacking a means for 
qualifying his quantitative statements, the advisor is 
caught in a communications trap. 

Yet another even worse dilemma is encountered 
whenever scientists give advice on policy-related issues. 
In addition to low-frequency hazards, these may con- 
cern diffused hazards, such as pesticides or  food addi- 
tives, or possible large-scale future environmental per- 
turbations, such as the greenhouse effect. Such advice is 
usually supported by the present or expected behavior 
of  some critical indicator. This dilemma has been 
stressed in a recent article by Maddox (1987) "Half- 
truths make sense (almost)". This was a comment  on a 
prediction of the consequences of the greenhouse ef- 
fect, using the rise in global mean temperature by 2030 
AD as the indicator. Offering definite advice is a risky 
business: a prediction of danger will appear  alarmist if 
nothing happens in the short run, while reassurance 
can be condemned if it retrospectively turns out to be 
incorrect. Then  the credibility of  science, traditionally 
based on its supposed infallibility, is threatened. Facing 
this dilemma, the scientific advisor may prudently 
refuse to accept low-quality expert  opinions as a basis 
for quantitative threshold values and consequently de- 
cline to provide a definite opinion when requested by 
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policy makers. Then  science is perceived as failing to 
perform its public function of  offering advice and as- 
surance, and its legitimacy is again threatened. Thus, 
the credibility of  science, based for so long on the sup- 
posed certainty of  its conclusions, is endangered by any 
sort of  statement on such inherendy uncertain issues, be 
it advice or  disclaimers. Is there no way to escape the 
horns of  this dilemma, in which the credibility and the 
legitimacy of  science are both at risk? As Maddox (1987) 
puts it, these are among the trials with which policy 
research centers must contend. "Tell the people that 
there is a muddle, or give them a clear message that 
they must man the barricades?" The  World Resources 
Institute's solution to the dilemma (the adoption of a 
computer model) is described by Maddox as a "cop- 
out." 

Thus, in policy-related research, the traditional tools 
for assuring quality through the control of uncertainty 
need to be enriched. To  solve the scientific advisors' 
dilemma, one needs something more than bigger, faster 
computers and more data. Uncertainty is integral to 
these problems; it cannot be removed by technical 
means. It  must be managed and effectively communi- 
cated so that it becomes a recognized input to the deci- 
sion-making process. We should exhibit the structure of  
our uncertainty, so that the quality of  our information 
in relation to its functions is assured. The  notational 
system NUSAP (Funtowicz and Ravetz 1991) has been 
designed and developed to further the evolution to- 
ward these ends. 

Science and the Management of Uncertainty 

As natural science has grown and matured over the 
centuries, it has developed tools for the management  of  
different sorts of  uncertainty. Each particular set of  
tools was devised in response to a recognized problem. 
Quantitative measurements have been made since an- 
tiquity in such fields as astronomy, but not until the 
early nineteenth century was an effective calculus of  er- 
rors created. In a separate tradition, combinatorial proba- 
bilities were created in the seventeenth century for the 
analysis of  games of  chance. These mathematical tools 
were then available in the later nineteenth century for 
use in all natural sciences involving random processes. 
A parallel development was in statistics from the seven- 
teenth century onwards, involving aggregated informa- 
tion gathered for its importance to statecraft and com- 
merce. These three approaches can be seen to relate to 
different aspects of  the limits of  our knowledge: errors 
relate to the limits of  exactness of  measurements made 
with real instruments; randomness relates to the limits 
of causality and determinism as observable in the nat- 

ural world; and statistics relates (implicitly in its prac- 
tice) to the limits of correspondence between descriptive 
categories and the reality to which they relate. These 
three approaches have all interacted with and enriched 
each other, so that now they are not distinct in name or 
subject matter. 

Another way of looking at the history of the man- 
agement of  uncertainty is in terms of the relation be- 
tween the researcher and the system under  study. Com- 
binatorial probabilities describe an abstract world, 
where knowledge of processes is incomplete, but where 
events occur totally independently of the observer and 
have no imprecision in themselves. The  theory of  errors 
arose from the realization of the interaction between 
the elements of  the measurement process. These are 
the instruments with a limited fineness of  scale and ac- 
curacy of construction and calibration, and the individ- 
ual operators with their perceptual inaccuracies and dis- 
tortions. In statistics there is an analogous effect; gen- 
eral concepts (e.g. population, income) must have 
operational definitions, and data collection and analysis 
must have safeguards against a variety of  possible er- 
rors. A scientific underpinning for error  theory has 
been provided by quantum mechanics, with its proof  
that each observation has a finite effect on the system 
and that there is a lower bound to the imprecision of 
related pairs of  measured magnitudes. 

Within the present century another approach to 
probability has been articulated, which formalizes per- 
sonal judgements of  the confidence to be placed on 
assertions and (in principle) allows their calculation by 
means of Bayes' theorem on inverse probabilities (Sav- 
age 1954). Such subjective probabilities have been ap- 
plied to the analysis of  complex problems in risks and 
the environment, where (as elicited from experts) they 
are used to remedy the lack of reliable statistical data 
and established causal theories. The  formal system of 
those subjective probabilities is equivalent to that of  
fuzzy sets (Gupta and others 1979). These may be seen 
as managing linguistic uncertainty. Thus, old does not 
have a distinct boundary with not old or young. The  
function describing membership of human ages in the 
class old will have the value zero for 1 and 2, and unity 
for 99 and 100. An intermediate zone of ages, describ- 
able as not so old, pretty old, etc., will have intermediate 
values for the fuzzy-set membership function (Zadeh 
1965). Since it is formally equivalent to the traditional 
probability calculus, fuzzy-set theory enables an elabo- 
rated computation with subjective probabilities. 

These techniques have been developed mainly in 
connection with the study of highly articulated models 
of decision procedures, in the field of policy analysis 
(Morgan and Henrion, 1990), rather than for the char- 
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acterization o f  the highly uncertain information that is 
c o m m o n  in policy-related research. For the latter case 
(which is our  present concern), they are well adapted 
for  a finer description o f  the inexactness or  spread of  
estimated quantities, since they can exhibit a complete 
probability distribution ra ther  than a simple mean and 
variance, however, such information is not at all certain. 
T o  characterize its own uncertainties (quite a real prob- 
lem in the case o f  what are only personal opinions) leads 
to marked difficulties in the theory because the only 
means available within the f ramework of  the theory is to 
p roduce  a subjective probability distribution for a sub- 
jective probability distribution, and it is not easy to find 
a straightforward interpretation tor such a second-or- 
der  operat ion (Henrion 1988). In our  scheme, this 
function is per formed by a separate category, the assess- 
merit or grade, which directly expresses the reliability o f  
the information rather than standing for its iterated 
probability. 

All the formal approaches to probability are attlicted 
by the problems o f  applying analytical techniques for 
the management  o f  the severe uncertainties in the in- 
fbrmation that is frequently the best available in policy- 
related research. All the traditional statistical tech- 
niques, even the non parametric methods for ordinal 
data, presuppose that the data are numerous  and o f  
good quality. In the face o f  a few coarse and scattered 
readings, all such techniques require many strengthen- 
ing assumptions about the data for  their applications to 
be legitimate. T h e  significance o f  low-level environ- 
mental effects, as assessed by standard tests, may well 
depend  more  on comput ing  procedures  and on hy- 
potheses about the shape o f  the data distributions than 
on the scanty data themselves. (Bailar 1988, pp. 8-12). 

It is because o f  the inadequacy of  the best attempts to 
apply traditional statistical techniques to the highly im- 
perfect  data so frequently encountered in policy-rele- 
vant research that we have developed the coarser, semi- 
qualitative approach  that is advanced here. O u r  ap- 
proach:  

1. avoids the at tempt to replace human judgenmnts  by 
formal systems or  by computer  programs-- ins tead  
it applies simple yet robust techniques ti)r the guid- 
ance o f  those judgements ;  

2. relies more  on description and classitication than 
on formal calculations; 

3. complements  the s tandard statistical techniques as 
commonly  taught and practiced. 

It can be useful even in cases where the data are appro-  
priate fbr manipulation by the s tandard techniques; but  

we believe that it is essential in the circumstances o f  
policy-related research. 

As Bailar (1988) puts it: 

All the statistical algebra and all the statistical computations are of 
value only to the extent that they add to the process of inference. Often 
they do not aid in making sound inferences; indeed they may work the 
other way, and in my experience that is because the kinds of random 
variability we see in the big problems of the day tend to be small 
relative to other uncertainties. This is true, for example, for data on 
poverty or unemployment; international trade; agricultural produc- 
tion; and basic measures of human health and survival. 

Closer to home, random variability--the stuff of P-values and con- 
fidence limits, is simply swamped by other kinds of uncertainties in 
assessing the health risks of chemical exposures, or tracking the move- 
ment of an environmental contaminant, or predicting the effects of 
human activities on global temperature or the ozone layer. It was, in 
fact, this aspect of environment problems that first attracted me to the 
field. I have long had an interest in non-random variability, and here 
I see it in ahnost pure tbrm [pp. 19-22]. 

In most discussions anmng  scientific researchers ac- 
tually per forming measurements  there is usually at least 
an implicit recognition o f  the relative degree o f  quality 
o f  various methods,  but  once a number  is obtained and 
exported to the general scientific communi ty  or  to an 
inexpert policy audience, it is implicitly presumed good. 
Even if it is quoted with its known imprecision (e.g., by 
significant digits or  by mean and variance), there is no  
record o f  its quality. Only those experts familiar with 
tile details o f  the measurement  methods will remem- 
ber it. 

In the case o f  policy-related research, most o f  those 
using the information are not experts in its product ion;  
they will not  know, or  be able to understand,  the tech- 
nicalities o f  the research that allow its quality to be un- 
derstood. They  will at first take the information on 
trust, presuming it to be o f  good quality; if this turns 
out  to be specious, then the credibility o f  all comparable 
information can be impaired. All experts tend to be 
accorded equal credibility in policy debates. When  any 
one is discredited, the credence given to all and the 
credibility o f  science itself are diminished. T h e  commu-  
nication o f  data quality therefore must  be clear and eas- 
ily unders tood if it is to be at all effective. 

We will use a familiar example to show how a single 
numerical measure is not  adequate tor expressing all 
aspects o f  the quality o f  information. A marksman 
shooting at a target will p roduce  a pattern o f  shots. 
They  may all cluster tightly, in which case we speak o f  
high precision, but we are also concerned with how 
closely they come to the bullseye, which we describe in 
terms of  accuracy. I f  the sighting apparatus is defective, 
tile marksman's  shots may well have high precision and 
low accuracy. (Of course, precision instruments are 
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those with both high precision and high accuracy). In 
general scientific practice, the thing being measured is 
not accessible to such simple, naked-eye observation; 
and while precision can be simply measured (as by the 
variance of  a set of  readings, what we will refer to as the 
spread), accuracy is known only indirectly, by the accu- 
mulated experience of  the behavior of  the system. Un- 
der such circumstances, the equivalent to accuracy be- 
comes the reliability of  the process, or the strength of  
the results, or what we will refer to as the grade. Its 
assessment is accomplished by judgements  based on 
craft experience rather than by counts and calculations. 

It is important to appreciate that the two attributes 
are quite independent.  Using the example of  the 
marksman with defective sighting apparatus, one can 
see how there could be high precision (low spread) with 
low accuracy (low grade). On the other hand, there are 
many scientific situations where the best available data 
may be of relatively low precision (high spread), but can 
nonetheless be quite reliable as a representation of the 
thing being measured and therefore deserve a high 
grade. High quality in scientific information is not se- 
cured by the banishment of  uncertainty (for that is im- 
possible) but by its effective conlmunication and man- 
agement. 

NUSAP Notational System 

Our notational system is thus based on an elucida- 
tion of these two sorts of  uncertainty. We start with the 
simplest sort, usually expressed by error  bars and sig- 
nificant digits. Every set of  data has a spread; it is an 
attribute of  any quality, however derived; it may be con- 
sidered in some contexts as a degree of precision, as a 
tolerance, or as a random error  in a calculated measure- 
ment. It  is the kind of  uncertainty that relates most 
directly to the quantity as stated and is most familiar to 
students and even the lay public. 

A more complex sort of  uncertainty relates to the 
level of  confidence to be placed in a quantitative state- 
ment; this relates to the accuracy that we have con- 
trasted to precision. In statistical practice, this is usually 
represented by the confidence limits (at, say, 95% or 
99%). In practice, such judgments  are quite diverse; 
thus safety and reliability estimates are given as conser- 
vative by a factor of  n. In risk analyses and futures sce- 
narios, estimates are qualified as optimistic or pessimis- 
tic. In laboratory practice, the systematic error in phys- 
ical quantities, as distinct f rom the random error or 
spread, is estimated on an historic basis. Thus,  it pro- 
vides a kind of  assessment to act as a qualifier on the 
number,  or  alternatively (if desired) on the spread. We 
call this attribute the grade to convey the qualitative de- 

gree of  goodness of  a number. This assessment of  grade 
is one level up from spread, both in its sophistication 
and variety. Our knowledge of the behavior of  the data 
gives us the spread; and our knowledge of  its produc- 
tion or intended use, gives us its grade. 

We can now introduce the full notational system de- 
signed for the management of uncertainty in quantita- 
tive information. We call it NUSAP; the last three letters 
in the acronym refer to the spread, assessment and ped- 
igree. The  first two refer to numeral and unit. The  first 
category encompasses the arithmetical system, and the 
second the base in which it is appropriately expressed. 
In a full NUSAP expression, there is a balance between 
all the elements; thus the number  of  significant digits in 
the numeral place, when combined with the scaling fac- 
tor in the units place, will be coherent with the inexact- 
ness described under  spread. 

We arrive at the grade by means of an evaluative 
accounting we call the pedigree of the data. We have 
developed a matrix of  items that show the boundary 
with ignorance (Table 1) by displaying the degrees of 
strength of crucial theoretical, empirical, and social 
components of  the process. The  theoretical, empirical, 
and social components are quality of models, quality of 
data, and degree of acceptance (Table 1). By scoring a par- 
ticular measurement in each of  these components we 
can describe its pedigree, and this pedigree is used to 
assess the measurement 's grade. The  three components 
are coded on an ordinal scale of  0-4, and their average, 
normalized on the scale 0-1, provides a convenient 
measure of  the overall grade. It should be clear that 
this scale provides a simple and suggestive index, and 
not a measured quantity. Provided that it is used with 
that awareness, and is not embedded in complex, hy- 
perprecise mathematical manipulations, it will function 
as a useful tool in tile evaluation of scientific informa- 
tion. Thus the pedigree, in exhibiting the limits of  the 
state-of-the-art of  the field in which the information was 
produced, provides us with a simple gauge for an as- 
sessment of  the strength of that information, or its 
grade. 

For example (referring to Table 1), if we qualify the 
theoretical component  of  a particular measurement as 
having used a computational model, we are implicitly 
stating that we do not have a theoretical model. We thus 
record the absence of an effective theory and score the 
theoretical component  as a 2. Similarly, if the empirical 
component  is not experimental, it can be at best histor- 
ical or field data, as in most environmental research, 
which would be scored as a 3. In the latter case, data are 
inherently less capable of  control; so it is less effective as 
an input and check on the quality of  the model. The  
components on the social side describe the evaluation of  
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Table 1. Numerical estimate pedigree matrix 

Theoretical, Empirical, Social, degree 
Score quality of model quality of data of acceptance 

4 Established theory Experimental data Total 
Many validation tests Statistically valid samples All but cranks 
Causal mechanisms understood Controlled experiments 

3 Theoretical model Historical/field data 
Few validation tests Some direct measurements 
Causal mechanisms hypothesized Uncontrolled experiments 

2 Computational model Calculated data 
Engineering approximations Indirect measurements 
Causal mechanisms approximated Handbook estimates 

1 Statistical processing Educated guesses 
Simple correlations Very indirect approximations 
No causal mechanisms "Rule of thumb" estimates 

0 Definitions/assertions Pure guesses None 

High 
All but rebels 

Medium 
Competing schools 

Low 
Embryonic field 

the informat ion in its part icular  context. Degree of  ac- 
ceptance of  a result will be s t ra ightforward in a fully 
ma tu red  field where  criteria o f  quality are agreed;  a 
rough  approx imat ion  to this is the referee 's  j u d g m e n t  
on the research paper .  T h e  social degree  of  acceptance 
c o m p o n e n t  is required  because it represents  an addi- 
tional e lement  in the overall pedigree  o f  uncertainty. 
Measurements  with high theoretical and empirical  qual- 
ity can still have high uncertainty if they have not with- 
stood the tests o f  peer  review and achieved scientitic 
consensus. 

NUSAP is a system because it is not simply a collec- 
tion o f  fixed notations. Rather,  it is a set o f  de terminate  
categories, each o f  which can be filled by particular no- 
tations appropr ia te  to the part icular  context  of  applica- 
tion. T h e  names  of  the five categories (or boxes, or 
places in a string) make  up  the acronym NUSAP.  By 
means  o f  this place value representat ion,  each category 
can be expressed without need  for  its explicit identifi- 
cation (this is why we re fe r  to it as a scheme o f  nota- 
tions). For each category, there  are many  possibilities 
for  conveying part icular  desired meanings;  thus in en- 
ergy studies, kilowatts, megawatts  and gigawatts are not 
merely the same unit  with prefixes denot ing a scaling 
increasing by a thousand.  Rather,  they refer  to physical 
and accounting operat ions at very different  levels, and 
they have quite different  meanings  as indices. Thus ,  
writing in the NUSAP notation we do not have 1 kW = 
10 -6  GW, except  in a formal  ari thmetical  sense. Simi- 
larly, units o f  money  have various appropr ia te  expres-  
sions that  are clearly distinguished in NUSAP. Thus ,  
for  the valuation o f  wetlands a c o m m o n  unit  is: thou- 
sand dollars pe r  acre at a part icular  date. So we write 
"$K/acre/yr" in the unit  place. These  cases show how 
NUSAP representat ions can convey variants o f  mean-  
ings that  may  appea r  not  too dif ferent  in ordinary  prac- 

tice but that are conceptually quite distinct. Any partic- 
ular array o f  such constituents in the five places we call 
a notation. Given such a notation, any particular case, 
such as "6 1/2 $K/acre/yr" will be an "instance" of  the 
notation. 

T h e  key distinction between NUSAP and o ther  no- 
tational systems is its incorporat ion o f  more  of  the com- 
ponents  o f  uncertainty,  in particular the assessment of  
the grade  of  the estimate. It is not in tended as a final 
and complete  system for  this purpose ,  but  as a starting 
point in the evolution of  our  m a n a g e m e n t  o f  uncertain- 
ties in data quality to compl iment  ou r  m a n a g e m e n t  o f  
o ther  forms of  uncertainty. 

T o  show the use o f  NUSAP for  characterizing un- 
certainty in informat ion in policy-related research, we 
take the example  criticized by Maddox  (1987). T h e  cho- 
sen indicator ( t empera ture  rise consequent  on green-  
house effect) as described by the World  Resources In-  
stitute did not exhibit effective control o f  its uncertain-  
ties, and so [as Maddox  (1987) said] could not  c o m m a n d  
very high confidence. T h e  original s ta tement  was of  a 
rise between 1.6~ and 4.5~ (in average ear th  t emper -  
ature over  the next  40 yr). In  NUSAP,  this increase is 
best displayed as, 

3 ~ -+50% [0.5] 
numera l  unit  spread grade  

T h e  first three places are derived directly f rom the 
quoted quantitative prediction. T h e  range  o f  1.6x to 
4.5x is near  enough  to 3 -+ 50%, and  it may  be said that  
our  mode  of  representat ion is more  faithful to the sci- 
entific meaning  o f  the datum.  It  thus displays skill in the 
m a n a g e m e n t  of  uncertainty and would, therefore ,  tend  
to maintain confidence in the scientists making  the pre-  
diction. We estimate a pedigree  o f  (2, 2, 2) using the 
model  pedigree matrix o f  Table  1, and  this translates to 
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a grade of  [0.5] [(2 + 2 + 2)/12]. This rating comes 
from analyzing the World Resources Institute's model 
of  global warming. Are there effective theoretical mod- 
els for atmospheric CO,, and its temperature effects? 
According to Maddox (1987), not quite; severe uncer- 
tainties exist on the time scales both of millions of  years 
and of  days. Hence we have, at best, computational 
models. What about the data that are injected into the 
models as inputs? There  are some that are better than 
educated guesses but (as yet) not much obtained 
through instrumental readings, even as historic/field 
data. Hence we do best to call them calculated data, 
usually resting indirectly on measurements. Moving 
now to the social aspects of the pedigree, the degree of 
acceptance of  tile result seems to be medium. The  crit- 
icisms of  Maddox (1987) are of the policy implications 
of  the prediction rather than of the quantity itself. 

This mapping of  the limits of  the state-of-the-art ex- 
hibits the boundaries with our ignorance. We do not 
know as much as we could had there been theoretical 
models and historic/field data. In such a case, predic- 
tions would have had more strength, more justified ur- 
gency, and perhaps also more inforination on environ- 
mental consequences and remedies. As it is, our  knowl- 
edge is not quite swamped by our ignorance, but it is 
still too weak and unfocused tor effective decision mak- 
ing. Our  ignorance in the policy aspects of  the problem 
has scarcely been dispelled. Thus,  the indicator of the 
World Resources Institute, when properly expressed, 
tells us more about our  ignorance than about the bio- 
sphere. 

In this way we see how relevant evahmtions of  quality 
are expressed through the assessment and pedigree cat- 
egories. These are cast in terms of the characteristic 
uncertainties of  the information, including the border 
with ignorance; and they can be expressed in a torm 
most appropriate for the policy problem that defines 
the indicator itself. 

As we have seen, the NUSAP system enables the rep- 
resentation of  a quantity (with its uncertainties) in a va- 
riety of  ways. Each form of expression corresponds to a 
particular type of message, depending on the content 
and context to be conveyed. Some expressions may con- 
tain more detailed infbrmation than others, if the loss of 
brevity is justified by the gain in effectiveness. The  full 
NUSAP torm, as given above, is the most general 
framework for such expressions. In it, the assessment 
box may be used to constitute the grade or degree of  
goodness. However, when a set of  similar numbers are 
being compared, some of  the boxes may be redundant. 
For many policy makers it is sufficient to use the most 
abbreviated torm, the pair (N, A), where N (the nu- 
meral) is a representative number,  and A (the assess- 

ment) is a code tor the grade that describes the degree 
of  goodness of  the number,  as distinct from its spread. 

An Arithmetic for Data Quality 

Tile NUSAP system is designed to enable judge- 
ments of  the quality of  quantitative inlbrmation to be 
applied in a consistent manner,  so that all users of  that 
information can make the same (or roughly the same) 
evaluations of  it. So far we have shown how the various 
aspects of  the uncertainty of  information can be de- 
scribed in standard codes; the system is thus established 
as a descriptive scheme. As such, it has a linfited useful- 
ness. The  nmnbers by which quantitative intbrmation is 
described are also used tor calculation, and the NUSAP 
system should enable the various sorts of  uncertainty to 
be tracked tln'ough a computation. Then,  from given 
uncertainties in the inputs, it should be possible to de- 
scribe the uncertainties in the outputs of  a calculation. 
With that accomplished, the N USAP system would con- 
stitute a true arithmetic, a special one for tim character- 
ization, manipulation, and ultimately the control of  un- 
certainty in quantitative information. For this first 
sketch of an arithmetic of  uncertainty, we will restrict 
ourselves to the case of  a small set of  elementary oper- 
ations. There  may well be problems arising when oper- 
ations are iterated many times, for which further special 
rules may be necessary. 

An arittnnetic of  uncertainty will be slightly different 
fu ordinary arithmetic in several ways. First, since it 
is dealing with particular properties of  nulnbers, its op- 
erations will not necessarily mirror those affecting tile 
numbers themselves. Moreover, we can expect that 
those concerning the spread will not be the same as 
those concerning the grade, since one is primarily a 
quantitative property while the other involves judge- 
ments of  quality. In addition, there will be some mod- 
ifications of  the rules to fit special cases. These can be 
detected by examination of  the numbers involved (this 
aspect of  the arithmetic can be progranuned on a com- 
puter, along with the basic arithmetic). 

It might be thought that an arithmetic with excep- 
tional cases is a rather odd arithmetic; hence it may be 
useful to show the sorts of  special cases affecting ordi- 
nary arithmetic, which in themselves indicate why a spe- 
cial notation for uncertain quantities is necessary. 

Consider two simple sums: 

1,000,000 1,000,000 
+ 5 + 5 

1,000,005 1,000,000 

The first of these is in conventional arithmetic; it is ar- 
ithmetically correct, but probably nonsense in practice. 
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For, except in the very rare case when the million has 
been counted out with perfect precision, the quantity 5 
is vanishingly small in comparison with it. On the other 
hand, the second sum, while meaningful in practice, is 
formally incorrect as arithmetic; one can imagine the 
reaction of  a schoolteacher if a pupil produced and de- 
fended such a sum! This pair o f  sums is the simplest 
representative of  a large class of  arithmetical operations 
where the numbers do not, or cannot, mean what they 
seem to; in technical language, we say that the zero is an 
ambiguous symbol, capable of  standing for either a 
digit (although even then a strange one) or a filler of  an 
empty place denoting a larger unit of  aggregation for 
counting. In NUSAP notation, the sum in its simplest 
form would read as follows: 

1 E 6  + 5 E 0  = 1 E 6  

and it is clear that the two quantities are of  different 
orders of  magnitude, incapable of  addition in an ordi- 
nary sum. 

Let us next consider the rules of  simple arithmetic 
that are appropriate for spread. These tbllow the tra- 
ditional rules of  the simple calculus of  errors: in sums 
and differences, absolute errors add; while in multipli- 
cations and divisions, proportional errors add. We 
could adopt the common rule that the root mean 
square sum of  errors is to be taken, but this would in- 
troduce an inappropriate degree of  complexity of  cal- 
culation at this stage. Thus  (with a, b, c, d all positive) 

(A-+a)  + ( B  + - b ) =  (A + B ) - 2 - ( a +  b) 

( A + - a ) - ( B  +- b) = (A - B) -+ (a + b) 

and 

(C +- c%) * (D -+ d%) = ( C * D ) - + ( c  + d ) %  

(C -+ c%)/(D +- d%) = (C/D) -+ (c + a')% 

The  use of  percentages to express proportional spreads 
must be done with caution, as it is very easy to write 
meaningless percentages such as 102% or 700%. When 
spreads are as large as, or  larger than, the number  itself, 
then the expression of  proportional spreads requires 
some skill. Quite reasonable percentages can give quite 
large spreads; thus spreads of  -+33%, -+50% and +-67% 
produce variations through factors of 2, 3, and 5, re- 
spectively (since, for example, [1 + 67%]/[1 - 67%] = 
5). For larger proportional spreads than those, we 
should use a notation for "factor os as F 10, to indicate 
variation through that proportional range, 

The  rules of  elementary arithmetic for the grade are 
nearly as simple, although there are two exceptional 
cases to be observed. In the case of  addition and sub- 
traction, we usually take the weighted mean of  the sep- 

arate grades of  the numbers. This reflects the intuitive 
judgement  that the quality of the result should be the 
"average" grade of the collection. The  strengths or 
weaknesses of  the separate elements are given their in- 
fluence, proportional to the size of  that element. Using 
brackets to denote the grade, we have: 

E,[e] +- F , ~  = (E -+ F), [(E * e + F * J)/(E + F)] 

The  two exceptional cases both apply when the two 
terms are nearly equal. The  reason for an exceptional 
grade is easier to see in the case of  subtraction. I f  we 
have two terms that are nearly equal, say 95 and 92, 
then any uncertainties in the initial terms will be mag- 
nified in their difference. This is easy to see in the case 
of spread; if each has a spread of  +- 1, then their differ- 
ence will be 3 - 2. The  proportional spread goes f rom 
about -+1%/'or each of  the initial terms, to +-66% for 
the difference, quite an enormous change. It  is hard to 
imagine such a number  being in any way as reliable as 
either of  the initial terms. Hence we must construct a 
rule, inevitably somewhat arbitrary in its details, for re- 
ducing the grade of  the difference element when its 
spread is so dramatically increased. This will be a more 
general, simple, and coarse version of" the rules for dis- 
tinguishing the means of statistical distributions. We di- 
vide the rule into three cases. There  is no change when 
the ratio difference to (average) spread (both expressed 
as percentages or as numbers) is greater than 5. I f  that 
ratio is less than 2, the grade is reduced by 50%. In 
between, the reduction is linear, bearing in mind that 
grades are expressed to the nearest single digit only. 

The  exceptional rule for addition is not quite so com- 
pletely automatic in its operation; it comes into play 
when two quantities that are derived from independent 
procedures are averaged or compared in some other 
way. In this case, there is a qualitative judgement  that if 
two such quantities are equal, or nearly so, by some 
appropriate criterion, then this property serves as a cor- 
roboration of  them both. Even if neither of  them can be 
checked directly against the reality that it is intended to 
measure, the unlikelihood that both have come to the 
same erroneous estimate serves as positive evidence that 
they are both more likely to be correct. For this case, we 
can apply the above rule in the other direction: when 
the ratio difference to (average) spread varies between 
5 and 2, the grade is increased by up to 50%. 

For multiplication of  numbers, the rule for grade is 
simple; here we adopt a weak-link principle: the grade 
of the product is the minimum of the grades of  the 
factors. Thus 

G,[gl * H,[h] = G * H,[Min(g,h)] 

For this rule, there are no exceptional cases. 
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Table 2. Summary of wetland value estimates (1983 dollars) for various components of wetlands contributing to 
their economic value, using two competing models [willingness to pay (WTP) and energy analysis (EA)] from 
Costanza and others (1989) 

Per acre present value 
at specified discount rate 

Annual value 
Method per acre 8% 3% 

WTP-based 
Shrimp 10.85 136 362 
Menhaden 5.80 73 193 
Oyster 8.04 100 268 
Blue crab 0.67 8 22 

Total commercial fishery $25.37 $317 $846 
Trapping 12.04 151 401 
Recreation 3.07 46 18 I 
Storm protection 128.30 1915 7549 

Subtotal 168.78 $2429 $8977 
Option and existence values ? ? ? 

EA-based 
GPP conversion $509~847 $6,400-10,600 $17,000-28,200 
Best estimate $169-509 $2,429-6,400 $8,977-17,000 

As we have been displaying the various rules for 
combining spreads and grades, we have been showing 
the way in which numbers may be expressed using the 
full NUSAP system. In this simple format, the differ- 
ence f rom ordinary notation is slight; thus we have, as a 
sample, 5 g/s ---2, [0.6]. Should it be useful to include the 
pedigree in the expression, then this might be done 
with another sort of  bracket, giving an expression like 5 
g/s +2, [0.6], {2,3,2}. 

We notice that the grade almost always decreases in 
calculations, sometimes quite drastically. It could be that 
many computations that are now accepted as reason- 
able and as giving meaningful outputs would, under  
such a grading system, be seen to be of  very low quality. 
In particular, matrix-inversion operations, involving 
the sums and differences of  many-factored products, 
would be especially vulnerable. The  fault, however, 
might not lie in the peculiarities of  a grading system, but 
rather in a class of  mathematical operations over which 
there has hitherto been very little effective quality con- 
trol. I f  these grading rules turn out to be too harsh in 
practice, then they can easily be modified in their de- 
tails, but the principle, on which effective quality con- 
trol can be based, that there must be some standard 
procedures for quality assessment, is not to be compro- 
mised. 

An Example: Valuation of Ecosystems 

To demonstrate the usefulness of  the proposed sys- 
tem, we carry it through for the example case of  eco- 
system valuation. We use a well-documented study of  

the economic value of wetlands in louisiana (Farber 
and Costanza 1987, Costanza and others 1989) that em- 
ployed a number  of  different models and methods to 
arrive at an estimate of  the total value of the ecosystem. 
The  results from the original study are reproduced in 
Table 2. 

There  are two overall tnethods whose results are 
presented. The  willingness to pay-based method enu- 
merates the various components of  ecosystem value and 
derives an independent estimate for each one. These 
components are then added to yield the total value. For 
example, shrimp production value was estimated as 
$10.85/acre/yr, and storm protection value as $128.30/ 
acre/yr. Option and existence value are known to be 
important components of  the total but no direct esti- 
mate was made for this ecosystem. 

A second method (energy analysis) uses the total so- 
lar energy captured by the ecosystem as an indicator of  
its economic value. It is more comprehensive (in that it 
does not require summing individually measured com- 
ponents to arrive at the total), but the connection be- 
tween energy captured and economic value is contro- 
versial and uncertain. 

Finally, the present value of  the ecosystem services 
are calculated using various discount rates based on the 
assumption that the ecosystems provide a constant 
stream of  benefits into the indefinite future. In this 
case: present value = annual value/discount rate. T h e  
appropriate discount rate to use in such a situation is 
highly uncertain, however. 

Table 3 is a recasting of these results into the NUSAP 
system. Here the numerical results are given only to the 
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Table 3, NUSAP scores and summary grades for elements of wetland valuation problem 

Element Numeral, N Unit, U Spread, S 

Assessment 

Pedegree Grade 

WTP-based estimates 
Shrimp 1 E1 $/ac/yr -+ 10% (3,3,3) 0.7 
Menhaden 6 E0 $/adyr +-20% (2,2,2) 0.5 
Oyster 8 E0 $/adyr -+30% (2,3,2) 0.6 
Blue crab 1 E0 $/ac/yr -+40% (3,2,3) 0.6 

Total Commercial Fishery 2.5 E1 $/aUyr +20% 0,6 
Trapping 1.2 E1 $/ac/yr -+30% (2,2,2) 0.5 
Recreation 3 E0 $/ac/yr -+ 10% (3,4,3) 0.8 
Storm Protection 1.3 E2 $/adyr -+20% (2,3,2) 0.6 

Subtotal 1.7 E2 $/ac/yr + 20% 0.6 
Option and Existence Values 5 E2 $/ac/yr -+50% (1,0,1) 0.2 

Total WTP 7 E2 $/ac/yr • 0.3 
EA-based 

GPP conversion 7 E2 $/ac/yr -+25% (3,2,1) 0.5 
Average of two methods 7 E2 $/ac/yr --.30% 0.6 
Discount rate 5 E0 % -+50% (1,3,1) 0.4 
Present value 15 E3 $/ac • 0.4 

appropriate degree of  precision, and the spreads on 
each number  are shown (using only 10% increments 
except for 25% and 75%). The  pedigree tbr each num- 
ber is given, based on an analysis of  the individual mod- 
els and methods used (see Costanza and others 1989, 
for a complete description of  these) coded using the 0-4 
system in Table 1. For example, the shrimp production 
estimate was based on a theoretical model relating wet- 
land area to shrimp catch (score = 3) using historical 
and/or field data from National Marine Fisheries 
shrimp catch statistics and measured wetland area 
(score = 3) in a procedure (regression analysis) that has 
high but not total peer acceptance for the intended pur- 
pose (score = 3). Finally the grade for each estimate is 
given based on the average scores in the pedigree [(3 + 
3 + 3)/12 = 0.6]. Note that grades are rounded to one 
digit. 

Several quantities are calculated in the table using 
the NUSAP arithmetic described above. These are 
shown in bold. The  total commercial fishery value is the 
sum of four components. Its spread is the weighted 
average of  the percentage spreads of  the components 
[(1El * 0.1 + 6 E 0 *  0.2 + 8 E 0 . 0 . 3  + I E 0 *  0.4)/ 
2.5E1) = 0.2]. Its grade is the weighted average of  its 
component  grades [(1El * 0.7 + 6E0 �9 0.5 + 8E0 �9 0.6 
+ 1E0 �9 0.6)/2.5E1 = 0.6]. 

An estimate for option and existence value is given 
based on studies of  other areas, but, as its spread and 
grade indicate, for this application it is definitely an 
order-of-magnitude estimate. The  total WTP based 
value reflects the quantitative importance of option and 
existence values and their relatively low quality. We end 

with a spread of -+40% and a grade of  0.3 for this es- 
timate. 

The  EA-based estimate yielded a very similar quan- 
tity estimate to the WTP estimate, and this is taken as 
corroborating evidence since the likelihood that this 
would occur by chance is small. The  average of  the two 
methods is therefore of  higher grade than either of  the 
inputs [0.6 vs (0.5 and 0.3)], and we are left with a rea- 
sonably high-quality estimate of  the total annual value 
of  wetland production [7 E2 $/acre/yr • 30% (0.6)]. 

Converting this to present value significantly reduces 
the data quality, however, because of the high uncer- 
tainty about the discount rate. The  spread on the 
present value goes to +-80% and the grade goes down 
to 0.4. 

The  two tables present very different pictures of  the 
situation. This is partly because in the original table, the 
per acre present value was calculated for each compo- 
nent of  ecosystem value, so that the original table has 
three columns of figures. In the NUSAP version, there 
is only one column, and the quantitative information is 
reduced to the minimum relevant to the quality assess- 
ment. Thus (for these purposes) we do not need to 
calculate present values with 3% and 8% discount rates, 
but only to provide a discount rate of  5 -50%,  with an 
appropriate pedigree. Hence the numeral  column of  
the table corresponds generally to the first column of 
the original table. 

We notice that much more information can be pro- 
vided by the NUSAP approach. For instance, if some- 
one consulting the table wanted to know about the qual- 
ity of  one of the estimates, then the number  10.85 (an- 
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nual value for shrimp) would not convey very nmch 
useful information. Clearly, this is not intended to say 
that an estimate of  10.88 would be seriously wrong; but 
whether 12 would be equally acceptable is not clear. 
Thus the digits by themselves do not provide an esti- 
mate of  their spread; the significant digits convention 
breaks down here as in many other cases, but with the 
NUSAP notation, the spread is given explicitly. 

With the confidence that NUSAP affords in the han- 
dling of highly inexact quantities, we can include useful 
quantitative arguments that would otherwise be obscure 
or burdensome. For example, in a table of  entries given 
to four or five digits (as the original one), there is no way 
to express the very inexact estimate of  option and exis- 
tence values. In the original table that row is left empty, 
with only question mark signs, but with NUSAP, this 
can be expressed as 5E2 -+50%, or lying between 250 
and 750, thus varying through a threefold range. When 
added to the willingness to pay estimates, this provides 
a sum of  7E2 +-40%, and this compares well with the 
completely independent estimate of 7E2 +25% by GPP 
conversion. It is then possible to invoke the principle of 
corroboration and to increase the grade of the common 
estimate. 

Thus, the NUSAP representation of the series of 
calculations that went into the estimation of the value of 
wetlands offers a clear picture of  the data quality. It also 
allows the uncertainty in the final estimate to be easily 
communicated, and it directs research to those areas 
most likely to improve the quality of  that final estimate. 
A system such as this (should it come into general us- 
age) would allow much saner management  of  our intel- 
lectual resources and much better management  of  our 
natural resources. 
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