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Abstract 

We analyzed the relationship between resolution and predictability and found that while increasing resolution 
provides more descriptive information about the patterns in data, it also increases the difficulty of accurately 
modeling those patterns. There are limits to the predictability of natural phenomenon at particular resolu- 
tions, and "fractal-like" rules determine how both "data" and "model" predictability change with reso- 
lution. 

We analyzed land use data by resampling map data sets at several different spatial resolutions and measur- 
ing predictability at each. Spatial auto-predictability (Pa) is the reduction in uncertainty about the state of 
a pixel in a scene given knowledge of the state of adjacent pixels in that scene, and spatial cross-predictability 
(PC) is the reduction in uncertainty about the state of a pixel in a scene given knowledge of the state of cor- 
responding pixels in other scenes. Pa is a measure of the internal pattern in the data while PC is a measure 
of the ability of some other "model" to represent that pattern. 

We found a strong linear relationship between the log of Pa and the log of resolution (measured as the 
number of pixels per square kilometer). This fractal-like characteristic of "self-similarity" with decreasing 
resolution implies that predictability may be best described using a unitless dimension that summarizes how 
it changes with resolution. While Pa generally increases with increasing resolution (because more informa- 
tion is being included), PC generally falls or remains stable (because it is easier to model aggregate results 
than fine grain ones). Thus one can define an "optimal" resolution for a particular modeling problem that 
balances the benefit in terms of increasing data predictability (Pa) as one'increases resolution, with the cost 
of decreasing model predictability (PC). 

Introduction 

We hypothesized that an important determinant of 
the predictability of phenomenon is the scale (reso- 
lution and extent) of the analysis. By resolution we 
mean "grain size" or the size of the smallest unit of 
measure, with increasing resolution corresponding 
to fine grain. We can distinguish at least two ways 
that resolution might affect predictability. One is 
the increasing difficulty of building predictive 

models at increasingly finer resolution. For exam- 
ple, the position and velocity of individual mole- 
cules in a gas is highly unpredictable, but the tem- 
perature of the gas (which is an average of these 
motions at a much cruder resolution) is highly pre- 
dictable. Likewise, it is easier to predict general 
climate patterns than it is to predict the exact 
geographic location and timing of rainstorms (the 
weather). 

On the other hand, finer resolution allows more 
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detail to be observed and internal patterns in the 
data to be seen that may not have been observed at 
cruder resolutions. One example is the warm core 
gyres that form in the Gulf Stream that were not ob- 
served until remote sensing images including the 
proper thermal bands and of sufficiently fine reso- 
lution were available. Another example is the quest 
by the military to obtain high enough resolution 
satellite images to see the features (such as tanks 
and airplanes) of interest to them that would not 
appear on lower resolution images. 

Some phenomenon are known to vary in a regu- 
lar way with resolution. For example, the regular 
relationship between the measured length of a 
coastline and the resolution at which it is measured 
is a fundamental one behind the concept of fractals 
(Mandelbrot 1977) and can be summarized in the 
following equation: 

L = k s(1-D) (1) 

where: 

L = the length of the coastline or other “fractal” 
boundary 

s = the size of the fundamental unit of measure or 
the resolution of the measurement 

k = a scaling constant 
D = the fractal dimension 

This convenient “scaling rule” has proved to be 
very useful in describing many kinds of complex 
boundaries and behaviors (Mandelbrot 1983, Milne 
1988, Turner et al. 1987, 1989, Olsen and Schaffer 
1990, Sugihara and May 1990). We hypothesized 
that this same kind of relationship might exist be- 
tween resolution and predictability (and possibly 
other measures as well) and might be useful for 
developing scaling rules for understanding and 
modeling. We tested this hypothesis by calculating 
both data and model predictability for a number of 
landscapes at a number of different resolutions. 

Measurement of predictability 

Colwell (1 974) applied information theoretic con- 
cepts to the problem of estimating the degree of 
predictability of periodic phenomena. The method 

is similar to autocorrelation analysis except that it 
is applicable to both interval and categorical data 
and may thus be more appropriate, for example, 
for comparing patterns of land cover. Predictabili- 
ty in this context refers to the reduction in uncer- 
tainty about one variable that can be gained by 
knowledge of another. For example, if the seasonal 
rainfall pattern in an area is predictable (e.g., there 
is always a severe dry summer), then knowing the 
time of year provides information about rainfall (if 
it’s summer, it must be dry). If there is no relation- 
ship between rainfall and season, time of year tells 
us little and the rainfall is relatively unpredictable 
from a knowledge of time of year. 

These techniques can also be applied to spatial 
data (Turner et al. 1989). In this application, one is 
interested in the degree to which the uncertainty 
about the category of a particular pixel is reduced 
from knowledge of other aspects of the same scene, 
or from knowledge of aspects of other, related 
scenes. There are several aspects of a scene that 
might be used as predictors. We discuss two im- 
plementations based on (1) the state of adjacent 
pixels in the same scene (“auto-predictability” or 
Pa); and (2) the state of corresponding pixels in 
other, related scenes (“cross predictability” or PJ. 
Other combinations of these two and higher level 
analyses ( i e . ,  adjacent pixel pairs, triplets, etc., or 
multiple cross comparisons) are also possible and 
useful for various purposes (Turner et al. 1989). 

The method in general can determine if there are 
regularities in a spatial data set, ranked on a scale 
from 0 (totally unpredictable) to 1 (totally predict- 
able), and the answer can be interpreted as the 
degree of departure of the scene or comparison be- 
tween scenes from a random (totally unpredictable) 
pattern. 

To estimate predictability, one first assembles a 
contingency matrix with states or conditions of the 
pixels along the left axis, and corresponding states 
of other pixels along the top. For auto-predicta- 
bility the categories in a map are listed on the left 
and along the top of a matrix. The numbers in the 
matrices represent the frequency of occurrence in 
the mapped data of the category (or category pair, 
triplet, etc. for higher level analysis) listed along the 
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top of the matrix lying adjacent to the category 
listed along the left. This yields information about 
how predictable the patterns of adjacency are in the 
sample map data. 

The contingency matrix can be any set of 
meaningful spatial relationships in the data. For 
example, another way of setting up the matrix is to 
define the predictability of one scene given another 
scene. For example, we might want to know the 
predictability of a landscape in one year given in- 
formation in some previous year@), or we might 
want to know the predictability of a real landscape 
compared to a landscape model’s output. We call 
this the “cross” predictability, because it provides 
information on the predictability of a given pixel’s 
category given knowledge of the category of the 
corresponding pixel in another scene. 

Following Colwell(l974) we define Nij to be the 
elements in the contingency matrix (i.e., the num- 
ber of times in the data that a pixel of category i was 
adjacent to one of category j for auto-predictability 
analysis). Define Xj as the column totals, Yi as the 
row totals, and Z as the grand total, or: 

X. = Nij ’ i = l  

and 

Then the uncertainty with respect to X is: 

x. x. 
j = l  Z Z 

H(X) = - c -Jlog--’ 

and the uncertainty with respect to Y is: 

Yi Y. 
H(Y) = - C -1og-J 

i = l  Z Z 

and the uncertainty with respect to the interaction 
of X and Y is: 

Then define the conditional uncertainty with regard 
to Y with X given as: 

HJY) = H(XY) - H(X) (8) 

Finally, define a measure of predictability (P) with 
the range (0,l) as: 

H(XY) - H(X) 
1 -  (9) 

H (Y) p = 1 - L =  
log s log s 

where s is the total number of rows (categories)-in 
the contingency matrix. 

This measure gives an index scaled on the range 
from 0 (unpredictable or maximum uncertainty) to 
1 (totally predictable or minimum uncertainty). 
Predictability will be minimal when all the elements 
in the contingency matrix (Nij are equiprobable 
(i.e., when all entries are the same), and will be 
maximized when only one entry in each column is 
non-zero. Most real spatial data will fall between 
these extremes. 

Study areas 

We applied these indices of predictability to land 
use data sets from the Kissimmee/Everglades Ba- 
sin, Florida and the state of Maryland. Both of 
these data sets contained three distinct years of data 
over which significant changes in land use patterns 
had occurred. 

Kissimmee/Everglades Basin, Florida 

The Kissimmee/Everglades drainage basin in South 
Florida represents one of the most rapidly changing 
and intensively modified landscapes in the country. 
It consists of some 18,700 square miles (48,500 
km2) of land and water (Fig. 1) covering about 1/4 
of the state of Florida. A set of three land use maps 
with 26 land use categories were prepared for the 
years 1900, 1953, and 1973 in order to analyze the 
dramatic changes that had occurred in the region 
during this interval (Costanza 1975,1979). In 1900, 
when much of the United States had already been 
developed into farmland and cities, the Kissimmeel 
Everglades basin remained much as it had been for 
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Table 1. Fractal auto-predictability dimension (given as l-DAp, scale constant (k), adjusted R2, and degrees of freedom (df) for auto- 
predictability (Pa) from regression of equation 3 for both data sets. ** indicates significant at the 0.1 level, * indicates significant at 
the .05 level. 

Site 

Kissimmee/Everglades, FL 
Kissimmee/Everglades, FL 
Kissimmee/Everglades, FL 
Kissimmee/Everglades, FL 
State of Maryland 
State of Maryland 
State of Maryland 
State of Maryland 

Year 

1900 
1953 
1973 
all years 
1973 
1981 
1985 
all years 

k (l-DAP) adj R2 df 

0.6364 0.111 .999** 4 
0.6383 0.085 .988** 4 
0.6250 0.096 .981** 4 
0.6332 0.097 .958** 14 
0.5189 0.031 .780* 4 
0.5046 0.034 .780* 4 
0.4956 0.030 .631* 4 
0.5434 0.031 .720** 14 

Table 2. Fractal cross-predictability dimension (stated as 1-Dcp, scale constant (k), adjusted R2, and degrees of freedom (df) from 
regression of equation 3 for cross-predictability (Pa for both data sets. ** indicates significant at the 0.1 level, * indicates significant 
at the .05 level. 

Site Year k (I-Dcp) adj R2 df 
~ 

Kissimmee/Everglades, FL 1900/1953 0.5764 -0.11 .943** 4 
Kissimmee/Everglades, FL 1953/1973 0.4936 - .017 .778* 4 
State of Maryland 1973/198 1 1.0790 - .006 .805* 4 
State of Maryland 1981/1985 0.9296 - .004 .777* 4 

where: 

P = the spatial predictability (Pa refers to auto- 
predictability, Pc refers to cross-predicta- 
bility) 

r = the resolution measured as the number of 
cells/km2 

k = a scaling factor 
D, = the fractal predictability dimension (dimen- 

sionless) 

by first transforming it into log-log form: 

In (PI) = In (k) + (1 -D,)ln (r) (3) 

and using standard linear regression analysis to 
solve for the parameters k and D,. 

The results are summarized in Table 1 , which in- 
dicates the high R2 for this relationship for both of 
the study sites. 

Cross-predictability experiments 

We calculated P, for both of the study areas by 
comparing maps from different years. This is ana- 

logous to a simple “null model” that predicts land 
use patterns for one time from patterns at some 
previous time or times. This “model” includes no 
information on the underlying processes of change, 
but we were interested in how changing the resolu- 
tion of the maps affected the predictability, and the 
“null model” of no change is an interesting point 
of reference. We fit equation 3 to the data and the 
results for the three sites are shown in Table 2. 

Results of both the auto and cross-predictability 
experiments for both sites are plotted together on a 
log-log scale in Fig. 3. The strong linearity of the 
relationship for all cases is apparent, as is the fact 
that auto-predictability (Pa) increases with increas- 
ing resolution while cross-predictability (P,) de- 
creases slightly with increasing resolution, although 
with a smaller D,. These results are consistent with 
our original hypotheses. Results for the Kissimmee/ 
Everglades data are markedly different from those 
for the Maryland data. The auto-predictability of 
Maryland land use changed much less with reso- 
lution than the Kissimmee/Everglades land use. 
The slope of the regression line (l-DAp for the 
Kissimmee/Everglades data was roughly three 
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A: Kissimmee Everglades Basin, Florida 
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Fig. 3. Natural log of resolution vs. natural log of predictability 
for A) the Kississmee/Everglades, Florida, and B) the state of 
Maryland land use data. Plot shows both auto-predictability 
(Pa) indicating internal pattern in the data for three different 
years, and cross-predictability (P,) indicating pattern matching 
between null models of prior land use maps and the particular 
map. The resolutions used (in cells/kmZ) were: Florida: 0.005, 
0.021, 0.083, 0.333, 1.333; Maryland: 0.011, 0.043, 0.171, 
0.686, 2.743. 

times that for the Maryland data. Auto-predicta- 
bility varied from about 0.65 to 0.35 over the range 
of resolutions used for the Florida data, but only 
from about 0.55 to 0.45 for the Maryland data. The 
Kissimmee/Everglades data was also more predic- 
table at the highest resolutions than the Maryland 
data. 

The cross-predictability results also differ 
markedly between the Florida and Maryland data. 
The slope of the regression line (1 - D,, was about 
three times higher for the Florida data than the 
Maryland data. Recall that the “null models” we 
are comparing with “data” in this analysis were 

Model Predictability 
(different models have different slopes and points of intersection) I 

I 
Lower Higher 

(larger grain) (smaller grain) 

Ln of Resolution 

Fig. 4. Hypothetical relationship between resolution and predic- 
tability of data and models. Data predictibility is the degree to 
which the uncertainty about the state of landscape pixels is 
reduced by knowledge of the state of adjacent pixels in the same 
map. Model predictability is the degree to which the uncertainty 
about the state of pixels is reduced by knowledge of the cor- 
responding state of pixels in output maps from various models 
of the system. 

land use data from prior years. As we can see from 
the results, this null model is a very good predictor 
of land use at all resolutions if the land use did not 
change radically over the study interval (as was the 
case in Maryland). In the Florida case, we were 
using a longer time interval and land use had 
changed radically over this interval, so the null 
model was much less accurate at all resolutions. 

In addition, this “null model” is of limited real 
usefulness since it embodies none of the underlying 
processes that caused the land use changes in the 
first place. In the more general case of dynamic 
landscape models, or models in general, we would 
not expect such high initial values of predictability, 
and would expect the predictability to fall more 
quickly with resolution. We are currently building 
dynamic landscape models to test this hypothesis 
which can be summarized in Fig. 4. 

Discussion and conclusions 

We can draw several conclusions from our analysis: 
1. Pa and P, belong to a class of “fractal-like” 

self-similar measures that vary in a regular way 
as resolution changes. This allows a “fractal 
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dimension” to be calculated that permits easy 
conversion of measurements of P taken at one 
resolution to other resolutions (for example, 
resolutions higher than those for which we have 
data). We suspect that there are many other 
spatial measures, which also exhibit this kind of 
self-similarity, that may be useful in developing 
a generalized theory of scaling. 

2. Pa generally increases with increasing resolu- 
tion. This relationship represents the “benefit” 
in terms of information gained about the pattern 
as resolution is increased. 

3. P, generally falls with increasing resolution. 
This relationship represents the “cost” of de- 
creased model predictability as resolution is in- 
creased. 
Combining 2 and 3 leads to some hypotheses 
about determining an “optimal” resolution for 
specific studies. At very low resolution it is easier 
to build predictive models, but they have little 
useful detail. At high resolution much useful de- 
tail is retained, but models are less able to predict 
it. An optimal resolution for scientific analysis 
may occur where these trends intersect - where 
one is balancing the costs and benefits incurred 
with increasing resolution. These results are con- 
sistent with empirical data from a survey of over 
85 models of freshwater wetlands (Costanza and 
Sklar 1985). 
The “models” we have analyzed so far are very 
primitive “null models” that one would expect 
to be different in overall predictability (P,) and 
in their fractal predictability dimensions (D ) 

cp than more sophisticated process-based spatial 
models (Costanza et al. 1990). We suspect that 
there is a different optimal resolution for each 
class of models, and possibly for each particular 
set of modeling objectives. We also suspect that 
Pc and its associated D,, will change with chang- 
ing technology and modeling skills. We are cur- 
rently pursuing research aimed at addressing 
these questions by applying process-based spa- 
tial models at several different resolutions. 
These results may be generalizable to all forms of 
resolutions (spatial, temporal, and number of 
components) and may shed some interesting 
light on “chaotic” behavior in systems. When 

looking across resolutions, chaos may be the low 
level of model predictability that occurs as a 
natural consequence of high resolution. Lower- 
ing model resolution can increase model predic- 
tability by averaging out some of the chaotic be- 
havior at the expense of losing detail about the 
phenomenon. For example, Sugihara and May 
(1990) found chaotic dynamics for measles epi- 
demics at the level of individual cities, but more 
predictable periodic dynamics for whole nations. 
The idea is not to maximize the resolution of 
analysis in order to “discover” this “unpredict- 
able” chaotic behavior, nor is it to maximize pre- 
dictability by ignoring details. Rather, the aim is 
to choose the resolution that maximizes the 
effectiveness of the model in balancing the con- 
flicting trends of data and model predictability 
with changing resolution. 
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