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Abstract

The Patuxent Landscape Model (PLM) is designed to simulate fundamental ecological processes on the watershed scale, in
interaction with an economic component that predicts the land use patterns. The paper focuses on the ecological component of the
PLM and describes how the spatial and structural rescaling can be instrumental for calibration of complex spatially distributed
models. The PLM is based on a modified General Ecosystem Model (GEM) that is replicated across a grid of cells that compose
the rasterized landscape. Different habitats and land use types translate into different parameter sets to be fed into GEM. Cells are
linked by horizontal fluxes of material and information, driven mostly by the hydrologic flows. This approach provides additional
flexibility in scaling up and down over a range of spatial resolutions and is essential to track the land use change patterns generated
by the economic component. Structural modularity is another important feature that is implemented in the general purpose software
packages (Spatial Modeling Environment and Collaborative Modeling Environment), that the PLM employs. 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Large drainage basins are composed of multiple
smaller catchments. Each of these catchments contains
a heterogeneous collection of land uses which vary in
composition and spatial pattern (structure) and thus dif-
fer in functions such as nutrient retention. Two problems
arise from this heterogeneity that present major chal-
lenges to both research and management. First, variation
in structure and function inevitably prevents true repli-
cation in intensive field studies that attempt to relate
landscape function to landscape structure. Second, vari-
ation among land uses within watersheds makes it diffi-
cult to directly extrapolate among spatial scales. Even
though drainage basins can be broken down hier-
archically into smaller catchments based on topography,
“scaling up” from intensive catchment studies is not a
linear additive process because of differences among
catchments and interactions between adjacent land uses.
Management of water quality over large drainage basins
must address both problems with innovative methods
synthesizing data from intensive experimental studies on
a few watersheds, then extrapolating important gen-
eralizations to larger drainages using modeling tech-
niques.

The Patuxent Landscape Model (PLM) was designed
to serve as a tool in a systematic analysis of the interac-
tions among physical and biological dynamics of the
Patuxent watershed (Maryland, USA), conditioned on
socioeconomic behavior in the region. A companion
socioeconomic model of the region’s land use dynamics
was developed to link with the PLM and provide a
means of capturing the feedbacks between ecological
and economic systems (Fig. 1). By coupling the two
models and exchanging information and data between
them, the socioeconomic and ecological dynamics can
be incorporated. Whereas in most ecosystem models the
socioeconomic development is fed into the model in the
form of scenarios or forcing functions, a coupled model
can explore dynamic feedbacks, adjusting the socioecon-
omic change in response to the ecological perturbations.

To run the ecological and economic modules in con-
cert, we need to account for specifics of both modules
in their design and make assumptions about how the
information will be exchanged. In particular, the spatial
representation of both should be matched such that land
use or land cover transformations in one module can be
communicated to the other one directly inside the model.

In this case it would be difficult to employ the approach
based on spatial aggregation to larger units, called
elementary landscapes, elementary watersheds, elemen-
tary areas of pollution or hillslopes (Beven and Kirkby,
1979; Krysanova et al., 1989; Band et al., 1991; Sasow-
sky and Gardner, 1991), which are considered homo-
geneous and form the basis for the hydrologic flow net-
work. In these models the boundaries between spatial
units are fixed and cannot be modified during the course
of the simulation. A more mechanistic approach seems
to be better suited when the landscape is aggregated as
a grid of relatively small homogeneous cells and pro-
cess-based simulations are run for each cell with rela-
tively simple rules for material fluxing among nearest
neighbors (Sklar et al., 1985; Burke et al., 1990;
Costanza et al., 1990; Engel et al., 1993; Maxwell and
Costanza, 1995). This fairly straightforward approach
requires extensive spatial data sets and high compu-
tational capabilities in terms of both storage and speed.
However it provides for quasi-continuous modifications
of the landscape, where habitat boundaries may change
in response to socioeconomic transformations.

The economic module of the PLM was presented else-
where (Bockstael, 1996; Bell and Bockstael, 1997;
Bockstael and Bell, 1997; Geoghegan et al., 1997). In
this paper we focus on describing the construction of
the ecological module, paying special attention to those
aspects of the model that were stipulated by the inte-
grated fashion of the entire research effort. We first out-
line the overall model design in terms of its spatial, tem-
poral and structural organization. Then we look at the
single-cell (unit) ecological model and focus on some of
the recent modifications of the General Ecosystem
Model (GEM) necessary for the Patuxent application.
Next we consider the spatial implementation of the
model and discuss some aspects relating to scale and
resolution. We conclude with a review of the results and
potential applications of the model.

2. Model structure

The PLM may be considered as an outgrowth of the
approach first developed in the Coastal Ecosystem Land-
scape Spatial Simulation (CELSS) model (Sklar et al.,
1985; Costanza et al., 1990), and later applied to a series
of wetland areas, the Everglades clearly being the most
sophisticated example (Fitz et al., 1998; Fitz and Sklar,
1998). The modeled landscape is partitioned into a spa-
tial grid of square unit cells. The model is hierarchical
in structure, incorporating the ecosystem-level unit
model that is replicated in each of the unit cells rep-
resenting the landscape (Fig. 2). With this approach, the
model builds on the format of a raster-based geographic
information system (GIS), which is used to store all the
spatially referenced data included in the model. Thus, the



475A. Voinov et al. /Environmental Modelling & Software 14 (1999) 473–491

Fig. 1. Relationships and linkages between the economic and ecological subsystems. The ecological and the economic modules provide essential
feedbacks that are instrumental to create a realistic system of values and to learn to measure these values.

model can be considered an extension of the analytical
function of a GIS, adding dynamics and knowledge of
ecological processes to the static snapshots stored in a
GIS.

Although the same unit model runs in each cell, indi-
vidual models are parameterized according to habitat
type and georeferenced information for a particular cell.
The habitat-dependent information is stored in a para-
meter database which includes initial conditions, rate
parameters, stoichiometric ratios, etc. The habitat type
and other location-dependent characteristics are refer-
enced through links to GIS files. In this sense, the PLM
is one of several site specific ecological models that are
process-based and are designed to apply to a range of
habitats. Some other models within this category are
CENTURY (Parton et al., 1988), TEM (Vorosmarty et
al., 1989), and BIOME-BGC (Running and Coughlan,
1988). All these models can be adapted to a particular
site through parameterization of initial stocks and flux
rates among various ecosystem components. These mod-
els vary in complexity and capabilities, which makes one
model more suitable for certain applications than others.

As a rule of thumb, more complex models will resolve
issues in more detail, but are more difficult and time-
consuming to calibrate and run (Maxwell and Costanza,
1994). The unit model in the PLM aims for an intermedi-
ate level of complexity so that it is flexible enough to
be applied to a range of ecosystems but is not so cumber-
some that it requires a supercomputer.

The unit models in each cell exchange matter and
information across space. The horizontal fluxes that join
the unit models together are defined by surface and sub-
surface hydrology. Alternative horizontal fluxes could be
movement of air, animals, and energy such as fire and
tidal waves although at this stage the PLM fluxes only
water and entrained material. The spatial hydrology
module calculates the amount of water fluxed over the
surface and in the saturated sediment. The fluxes are
driven by cell-to-cell head differences of surface water
and saturated sediment water, respectively. Water fluxes
between cells carry dissolved and suspended material.
At each time step, first the unit model updates the stocks
within each cell due to vertical fluxing and then cells
communicate to flux matter horizontally, simulating



476 A. Voinov et al. /Environmental Modelling & Software 14 (1999) 473–491

Fig. 2. Spatial organization of the Patuxent watershed model. The unit model is replicated in each of the cells on the study area. Different habitat
types are characterized by different parameters in the unit model. Hydrological fluxes connect the unit models horizontally.

flows and determining ecological conditions across the
landscape.

Fig. 3 presents how the various modeled events are
distributed in time when simulated in the PLM. The
model employs a time step of 1 day, so that most of the
ecological variables are updated daily. However certain
processes can be run at longer or shorter time steps. For
example some spatial hydrologic functions may need an
hourly time step, whereas certain external forcing func-
tions are updated on a monthly or yearly basis.

This explicit spatial and flexible temporal design of
the PLM ecological module is instrumental for a linkage
with a companion economic model that predicts the
probability of land use change within the seven counties
of the Patuxent watershed (Bockstael, 1996). The econ-
omic model allows human decisions to be modeled as a
function of both economic and ecological spatial vari-
ables. Based on empirically estimated parameters, spati-
ally heterogeneous probabilities of land conversion are
modeled as functions of predicted land values in residen-
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Fig. 3. Temporal course of events in PLM. SME offers certain flexi-
bility in scheduling simulation events. Individual time steps can be
assigned to different modules.

tial and alternative uses, and costs of conversion. Land
value predictions are modeled as functions of local and
regional characteristics. The predictive model of land use
conversion generates the relative likelihood of conver-
sion of cells, and thus the spatial pattern of greatest
development pressure. To predict the absolute amount
of new residential development, the probabilistic land
use conversion model is further combined with models
of regional growth pressure. As a result a new landuse
map is generated and fed into the ecological model on
a yearly basis.

3. Unit model

The General Ecosystem Model or GEM (Fitz et al.,
1996) was used as the initial unit model in developing
the PLM. However, since GEM was developed and cali-
brated mostly for wetland ecosystems, certain modifi-
cations were made in order to provide for a smooth

transfer to the predominantly dry, terrestrial habitats of
the Patuxent watershed.

The GEM unit model is structured according to a
modular concept, which is enforced by the semantics of
the development tools used (Maxwell and Costanza,
1997). Different modules (or sectors) can be designed
independently and linked together in a piecewise
fashion. This process facilitates the reuse of modules and
a cleaner subdivision of the development effort. Differ-
ent sectors in the GEM represent hydrology, nutrient
movement and cycling, terrestrial and estuarine primary
productivity, and aggregated consumer dynamics (Fig.
4). The hydrology sector of the unit model is fundamen-
tal to modeled processes since it links the climatic forc-
ing functions to chemical and biotic processes, and
allows feedbacks between sectors. Phosphorus and nitro-
gen are cycled through plant uptake and organic matter
decomposition, with the latter simulated in the sector
that describes the sediment/soil dynamics. The sector for
macrophytes includes growth response to various
environmental constraints (including water and nutrient
availability), changes in leaf canopy structure
(influencing water transpiration), mortality, and other
basic plant dynamics. Feedbacks among the biological,
chemical and physical model components structure habi-
tat and influence ecosystem response to changing con-
ditions.

In what follows, we give a brief account of the modi-
fications that GEM underwent in the PLM implemen-
tation, referring the reader to (Fitz et al., 1996) for
further details on GEM.

3.1. Hydrology

The traditional scheme of vertical water movement
(Novotny and Olem, 1994), also implemented in GEM,
assumes that water is fluxed along the following path-
way: rainfall – > surface water – > water in the unsatu-
rated layer – > water in the saturated zone. Snow is yet
another storage that is important to mimic, the delayed
response caused by certain climatic conditions. In each
of the stages some portions of water are diverted due to
physical (evaporation, runoff) and biological
(transpiration) processes, but in the vertical dimension
the flow is controlled by the exchange between these 4
major phases. Taking into account the temporal (1 day)
and spatial (200 m, 1 km) resolution of the PLM for-
malization and of the available input data, we can sim-
plify this model.

At a daily time step assumed in GEM and PLM, the
model cannot attempt to mimic the behavior of shorter
term events such as the fast dynamics of a wetting front,
when rain water infiltrates into soil and then travels
through the unsaturated zone towards the saturated
groundwater. During a rapid rainfall event, surface water
may accumulate in pools and litterfall but in a catchment
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Fig. 4. GEM conceptual diagram.

such as the Patuxent watershed, over the period of a day,
most of this water will either infiltrate, evaporate, or be
removed by horizontal runoff. Infiltration rates based on
soil type within the Patuxent watershed range from 0.15
to 6.2 m/day (Maryland Department of State Planning,
1973), potentially accommodating all but the most
intense rainfall events in vegetated areas. The intensity
of rainfall events can strongly influence runoff gener-
ation, but climatic data are rarely available for shorter
than daily time steps. Also, if the model is intended to
be run over large areas for many years, the diel rainfall
data become inappropriate and difficult to project for
scenario runs. Therefore, a certain amount of detail must
be forfeited to facilitate regional model implementation.

With these limitations in mind, we have simplified the
unit hydrologic model as follows (Fig. 5):

I We assume that, rainfall infiltrates immediately to the
unsaturated layer and only accumulates as surface
water if the unsaturated layer becomes saturated or if
the daily infiltration rate is exceeded. Ice and snow
may still accumulate.

I Surface water may be present in cells as rivers, creeks
and ponds. Surface water is removed by horizontal
runoff or evaporation.

I Within the day time step, surface water flux will also
account for the shallow subsurface fluxes that rapidly
bring the water distributed over the landscape into the
micro channels and eventually to the river. Thus, the
surface water transport takes into account the shallow

Fig. 5. Hydrologic sector of modified GEM. The main state variables
represent water in streams, rivers, creeks (Surface Water), in the
unsaturated soil layer (Unsaturated Water) and in the saturated
groundwater storage (Saturated Water).

subsurface flow that may occur during rainfall,
allowing the model to account for the significantly dif-
ferent nutrient transport capabilities between shallow
and deep subsurface flow.

Conceptually this is close to the slow and quick flow
separation (Jakeman and Hornberger, 1993; Post and
Jakeman, 1996) assumed in empirical models of runoff.
In this case the surface water variable accounts for the
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quick runoff, while the saturated storage performs as the
slow runoff, defining the baseflow rate between rain-
fall events.

3.2. Nutrients

The GEM nutrients sector was changed to better
match the aggregated hydrologic module (Fig. 6). As in
GEM, the nutrients considered in the PLM are nitrogen
and phosphorus. Various nitrogen forms, NO2

−, NO3
−

and NH4
+ are aggregated into one variable representing

all forms of nitrogen that are directly available for plant
uptake. Available inorganic phosphorus is simulated as
orthophosphate. The distinction appears in conceptualiz-
ing nutrients on the surface, since in the PLM they are
no longer associated with surface water and therefore
need not be in the dissolved form. On the contrary, since
most of the time most of the cells have no surface water,
n SF(n 5 N or P) represents the dry deposition of nitro-
gen or phosphorus on the surface. Over dry periodsn SF
continues to accumulate with incoming fluxes from air
deposition or mineralization of organic material. When
rainfall occurs, a certain proportion of the accumulated
n SFbecomes dissolved and therefore is made available
for horizontal fluxing and infiltration.

Further modification of the nutrient dynamics was
required to accommodate the aggregation of surface and
shallow subsurface flows in the hydrologic sector. In the
PLM a proportion of nitrogen and phosphorus stored in
the upper soil layer is made available for fast horizontal
fluxing along with nutrients on the land surface. We have
assumed this layer to be 10 cm thick, following a similar
formalization in the CNS model (Haith et al., 1984),
where this upper soil layer was also assumed to be
exposed to direct surface runoff.

Fig. 6. Nutrients sector of modified GEM.n SFandn SDrepresent
total available phosphorus (P) or nitrogen (N) on the surface and in
the sediment, respectively.P SSis the sorbed phosphorus of the sedi-
ment that is immobilized and deposited.

In addition ton SF (mineral N or P on the surface),
and n SD (mineral N or P in the sediment), the phos-
phorus cycle features another variableP SS, which is
the phosphorus deposited in the sediment in particulate
form, no longer available for plants uptake, and effec-
tively removed from the phosphorus cycle. The dis-
solved PO4 at higher concentrations becomes absorbed
by the organic material and metal ions in the soil. There-
fore the rate of sorption is also controlled by the amount
of organic material in the soil, which in this case mostly
consists of soil microorganisms (microbes). At lower
concentrations of soluble PO4 in the sediment,P SS
becomes available again and returns back into the cycle.

3.3. Macrophytes

The GEM macrophyte sector was updated to allow the
model to better distinguish different plant communities.
We added dynamics in carbon to nutrient ratios that are
important to woody and perennial plant communities
(Vitousek et al., 1988) and introduced important differ-
ences between evergreen and deciduous plant communi-
ties. Additional fluxes were added to allow for human
intervention through fertilizing, planting and harvesting
of crops and trees. The newly revised macrophyte sector
can now simulate the nutrient storage of a forest ecosys-
tem in multiple year simulations and allow scenarios for
Best Management Practices (BMP’s) in agriculture and
urban lawns.

As in GEM, macrophytes are represented by two state
variables for photosynthetic and non-photosynthetic
plant matter. The carbon to nutrient ratios (C:N:P ratios)
for both state variables link to different steps in the nutri-
ent cycles. The C:N:P ratio in the photosynthetic part
is instrumental in controlling uptake and the resulting
accumulation of organic nitrogen and phosphorous. The
C:N:P ratio in the non-photosynthetic biomass is used
to estimate the rates of decomposition and the extent of
nutrient mineralization. The GEM strategy to account for
the organic nutrient pool as a fixed portion of both stock
variables, assumed static C:N:P ratios for woody and
photosynthetic biomass. Yet C:N:P ratios tend to
increase as woody biomass low in nutrient content
accumulates in aging forests. Our new strategy still
assigns fixed C:N:P ratios to the photosynthetic biomass,
but relates changes in the non-photosynthetic biomass
C:N:P ratios to changes in woody biomass, bringing esti-
mated nutrient storages closer to measured values.

Some concepts were redefined in the new model to
represent a greater variety of habitats. The terms ever-
green and deciduous are broadly interpreted to
encompass not only trees but other plant communities.
Most of the agricultural crops and annual herbs are con-
sidered deciduous, while wetlands, grasslands and lawns
are considered evergreen. The main difference between
the deciduous and non-deciduous plant communities is
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that a fall hormonal trigger mechanism causes the
deciduous plants to shed the photosynthetic part of the
plant, while recovering some of the biomass for the non-
photosynthetic tissues. No recovery of biomass occurs
from leaf mortality. It is during this fall period when
seeds and tubers are formed and photosynthetic products
are stored in tree root systems. In the spring deciduous
plants experience accelerated growth in addition to a sea-
sonal growth also experienced in the evergreen com-
munity.

Allocation of photosynthetic products to leafy or
woody tissues is controlled by the maximum in the ratio
of photosynthetic to non-photosynthetic materials
(Max ph:nph). An accelerated spring growth, simulating
sap flow in trees and seed germination, was introduced
for the deciduous portion of the plant community. Labile
carbon stored in non-photosynthetic tissues (roots, stems
and branches) are translocated to produce photosynthetic
tissue (leaves) in an attempt to reach a community-spe-
cific Max ph:nph. Translocation from the non-photosyn-
thetic tissue to the photosynthetic tissue comes to a halt
when all labile carbon is used from storage, or the
Max ph:nph ratio is reached, or hormonal activity
ceases. New photosynthetic products are created in the
leaves, under the various environmental restrictions
similar to GEM. These newly available products can be
allocated to additional leaf growth ifMax ph:nph is not
yet reached, or can be translocated back to the non-pho-
tosynthetic parts for growth of woody matter or storage.
Growth in woody matter offsets the photosynthetic to
non-photosynthetic ratio fromMax ph:nph and allows
for additional growth in leafy material.

4. Spatial implementation

Once the local ecological processes were described,
we needed to decide on the algorithms that put the local
dynamics within a spatial context. For watersheds in
general and for the Patuxent in particular, hydrologic
fluxes seem to be the most important mechanism linking
the cells together and delivering the suspended and dis-
solved matter across the landscape.

The importance of hydrologic transport has been long
recognized and considerable effort has been put into cre-
ating adequate models for various landscapes (Beven
and Kirkby, 1979; Beasley and Huggins, 1980; Grayson
et al., 1992). Nevertheless there are no off-the-shelf uni-
versal models that can be easily adapted for a wide range
of applications. As a part of a more complicated mode-
ling structure, the hydrologic module is required to be
simple enough to run within the framework of the inte-
grated physical-ecological model yet sufficiently detailed
to incorporate locally-important processes. As a result,
some hydrologic details need to be sacrificed to make
the whole task more feasible, and these details may dif-

fer from one application to another, depending upon the
size of the study area, the physical characteristics of the
slope and surface, and the goals and priorities of the
modeling effort.

To simplify hydrologic calculations, we merge pro-
cess based and quasi-empirical algorithms (Voinov et al.,
1998). First, given the cell size within the model (200
m or 1 km), every cell is assumed to have a stream or
depression where surface water can accumulate. There-
fore the whole area becomes a linked network of chan-
nels, where each cell contains a channel reach which
discharges into a single adjacent channel reach along the
elevation gradient. An algorithm generates the channel
network from a link map which connects each cell with
its one downstream neighbor chosen from the eight poss-
ible nearest neighbors.

Second, since most of the landscape is characterized
by an elevation gradient, the flow is assumed to be unidi-
rectional, fluxing water downstream. In the simplified
algorithm, a portion of water is taken out of a cell and
added to the next one linked to it downstream (Fig. 7A).
To comply with the Courant condition (Chow et al.,
1988), this operation is reiterated many (10–20) times a
day, effectively generating a smaller time step to allow
faster riverflow. The number of iterations needed for the
hydrologic module is calibrated so that the water flow
rates match gauge data.

This procedure was further simplified by allowing the
water to flow through more than one cell over one iter-
ation (Fig. 7B) and then generalized by assuming a vari-
able number cells in the downstream link (Fig. 7C), as
a function of the amount of water in the donor cell. This
was adopted to allow for a faster flow when more water
is available on the surface (Voinov et al., 1999). It
increased flexibility in describing individual hydrographs
and in generalizing them over longer time periods and
over larger watershed areas.

For groundwater movement we used a linear Darcy
approximation, that moves water among adjacent cells
in proportion to a conductivity coefficient and the head
difference. The groundwater movement provides the
slow water flow that generates the river baseflow. Sur-
face water runoff is the major determinant of the peak
flow observed.

5. Software development

The sophisticated structure of PLM is supported by
several general-purpose software packages, that have
been developed and refined to meet the needs of PLM.
Fig. 8 presents the interaction between the software
modules and the data involved. The modules shown in
gray are the ones that the user needs to interface with.

The unit model is developed using the off-the-shelf
application STELLA (HPS, 1995), that has been widely
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Fig. 7. Algorithms of spatial hydrologic fluxing in the model. A. fixed linking to the next cell downstream. Hydrologic fluxing is reiteratedn
times over the same link map. B. fixed linking overn cells downstream. Instead ofn iterations of fluxing, the water is moved directly to then-
th cell downstream. C. dynamic linking. The length of the link path is determined as a function of the stage in a cell.

Fig. 8. Software used in PLM. The gray areas show the front-end packages that the user needs to interact with while developing and running
the model.
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used for dynamic simulation modeling and allows simple
icon-based model building and preliminary analysis.
Using STELLA as a front end also greatly simplifies the
communication of the model structure to the stake-
holders and decision makers (Costanza and Ruth, 1998).
The Spatial Modeling Environment (SME) (Maxwell
and Costanza, 1994; Maxwell, 1995; Maxwell and
Costanza, 1995) links icon-based modeling environ-
ments with distributed computing resources.

The model equations generated from STELLA are
exported to the SME through a program which translates
the STELLA file into the Modular Modeling Language
(MML) (Maxwell and Costanza, 1997). This language
provides the semantic structures needed to facilitate
archiving and reuse of modules by other researchers in
the future. MML-specified model components can be
combined hierarchically and are converted by the Code
Generator into a C11 object hierarchy within the SME.
The C11 objects are then compiled and linked with
SME libraries to generate a stand-alone simulation driv-
er.

The SME driver is a simulation environment which
runs the spatial simulation on a number of possible par-
allel or serial computers. It is implemented as a set of
distributed C11 objects which exchange data among
themselves using network-based multiprocessing. A spa-
tial simulation running within the SME driver is struc-
tured as a set of independent modules, each with a poten-
tially unique spatio-temporal representation, defined by
a data structure called a Frame. The Frame specifies the
topology of the module and is implemented as a set of
Points (cells) with (inter-cellular) links, as well as algor-
ithms for transferring/translating data to/from other
Frames. Examples of Frames used in PLM include two-
dimensional grids (spatial coverages such as soil maps,
landuse maps, etc.), graphs and networks (e.g., for rivers
and streams), and Point sets (e.g., for running unit mod-
els for a single aggregated set of conditions rather than
across a heterogeneous space). With this method, simul-
ations involving modules with disparate spatio-temporal
scales can be executed transparently, since the
implementation of each module’s Frame allows
incoming data to be remapped to fit its topology, and
remaps outgoing data into a universal format.

Unsophisticated users do not need to understand all
the details of SME as long as they are running the front-
end package, which is the SME user interface,
implemented as a module in the Collaborative Modelling
Environment (CME) (Villa, 1997a). CME allows users
to define projects, simulation models, input/output con-
figurations, and simulation runs with different calibration
data. All of these objects are stored in the database for
sharing by collaborating individuals or groups.

6. Calibration and testing

Much of the time involved in developing spatial pro-
cess-based models is devoted to calibration and testing
of the model behavior against known historical or other
data (Costanza et al., 1990). Calibrating and running a
model of this level of complexity and resolution requires
a multi-stage approach. We performed the calibration
and testing at several time and space scales (Fig. 9). Tak-
ing advantage of the model modularity, these tests were
carried out for various parts of the model as well as for
the whole model. Initial unit model calibrations were
handled in STELLA, then the fine tuning was performed
using the Model Performance Index (MPI) (Villa, 1997b;
Villa et al., 1999). At the same time certain modules
were put into the spatial context and calibration of the
spatial model was carried out. The data against which
we test and calibrate the model have been summarized
by Wainger et al. (1999) and can be also found on our
web page at http://iee.umces.edu/PLM. In what follows
we mostly illustrate this multi-tier calibration procedure
with some of the results obtained for the hydrologic
module of the model.

First a “ball-park” calibration was performed for the
unit model hydrology. The unit model simulates the head
of SURFACE WATER, SNOW/ICE, water in the
unsaturated layer (UNSAT WATER), and water in the
saturated sediment (SAT WATER) (Fig. 10). The latter
two variables represent the actual amount of water in the
saturated and unsaturated layers, as if it was completely
“squeezed” out of the sediment and then its head meas-
ured. To calculate the real depth of the water table, the
amount of saturated water is multiplied by the soil
porosity. At this stage it was important to reproduce the
qualitative picture of water dynamics in a cell, making
sure that there are no long-term trends and that the stages
remain within certain limits over several years of
model runs.

The results were quite sensitive to the horizontal flow
rates of surface and ground water (Fig. 11), which could
be only parameterized rather than calculated in the unit
model. Fairly small changes in values of these para-
meters (, 5%) produced visible variations in the state
variables, hiding the variability due to changes in the
other parameters responsible for local vertical dynamics
(infiltration, evapotranspiration, etc.). Therefore more
detailed calibration of the hydrologic model in the local
scale did not make much sense. Besides there was no
reliable local data to compare the unit model output to.

For a spatial implementation, we chose two scales at
which to run the model—a 200 m and 1 km cell resol-
ution. The 200 m resolution is more appropriate for cap-
turing some of the ecological processes associated with
landuse change but is too detailed and requires too much
computer processor time to perform the numerous model
runs required for calibration and scenario evaluation.
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Fig. 9. Multi-tier calibration process for a complex spatial model. Different modules are calibrated independently at a variety of spatial scales
and resolutions.

Fig. 10. Output of the unit hydrologic model, calibrated to qualitative local data.
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Fig. 11. Sensitivity tests for water in saturated (A.) and unsaturated storage (B.). High sensitivity to horizontal groundwater flow rate demonstrates
the importance of spatial hydrologic processes for the adequate model performance in the local scale. (1—flow rate5 0.0027 m/day; 2—0.0028;
3—0.0029; 4—0.003.)

The 1 km resolution reduced the total number of model
cells in the watershed from 58,905 to 2352 cells.

We also identified a hierarchy of subwatersheds for
calibration at different spatial extents. The Patuxent
watershed has been divided into a set of nested subwat-
ersheds to perform analysis at three scales (Fig. 12). A
small (23 km2) subwatershed of Cattail creek in the
northern part of the Patuxent basin was used as a starting
point. The next larger watershed was the upper non-tidal
half of the Patuxent watershed that drained to the USGS
gage at Bowie (940 km2). Ultimately we examined the
whole Patuxent watershed (2352 km2). The number of
total model cells grew from 566 cells initially, to 23,484
cells for the half watershed, and then to 58,905 cells for
the entire study area at the 200 m resolution.

A set of experiments was staged with the small Cattail
creek subwatershed to test the sensitivity of the surface
water flux. Three crucial parameters controlled surface
flow in the model: infiltration rate, horizontal conduc-
tivity and number of iterations per time step in the
hydrologic model. Riverflow peak height was strongly
controlled by the infiltration rate. The conductivity
determined river levels between storms and the number
of iterations or the linkage length modified the width of
the storm peaks.

Surface water flow was calibrated against the 13
USGS gaging stations in the area that have data concur-
rent with the climatic data series (1980–90). The model
results for the Cattail subwatershed were in fairly good
agreement with the gauge data (Fig. 13). The model
parameters were adjusted over a time period of one year,
and then they were fixed for the second year run. Since
the initial conditions were roughly approximated it took
several months for the model to adjust. In comparing the

Fig. 12. Spatial hierarchy of subwatersheds adopted in the PLM. A.
small Cattail Creek subwatershed; B. upper part of the watershed drain-
ing at Nr. Bowie USGS gaging station; C. the full Patuxent River
watershed.
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Fig. 13. Calibration (first 365 days) and verification (second 365 days) of the spatial hydrologic module based on the 1980–81 data for two gaging
stations on Cattail Creek. A. Nr. Cooksville station; B. Nr. Glenwood station.

results to the data it should be noted that we were not
greatly concerned about simulation of individual hydro-
graphs or rainfall events. Rather we were trying to repro-
duce the overall water flow patterns and total volumes

fluxed in the area over the time period of a year and
more. Some of the flow statistics for the model cali-
bration over a time period of five years are presented in
Table 1.
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Table 1
Model verification statistics for the Cattail subwatershed and the Half subwatershed draining at Bowie

Cattail Bowie
Data Model % error Data Model % error

Total Flow 2510.41 2527.58 0.68 36617.43 37978.78 3.6
max 10% 930.2 925.79 20.48 12497.58 16546.70 27.9
min 50% 587.3 596.25 1.50 7917.98 6582.62 218.4
Total 1986 326.16 282.24 215.56 4752.94 4352.84 28.8
Total 1987 472.83 469.25 20.76 6446.08 7041.22 8.8
Total 1988 482.01 414.22 216.37 6751.99 5841.62 214.5
Total 1989 660.62 748.29 11.72 10507.98 11881.88 12.3
Total 1990 568.78 611.31 6.96 8158.45 8861.23 8.3

The calibration for the small subwatershed did not
hold as well for the half-watershed area, when the same
model was applied. For the gaging station used to cali-
brate Cattail Creek, the error was quite small, however
for downstream gaging stations on the Patuxent River
the error was considerably higher. We failed to capture
the peak flows in the model.

The number of iterations (effective time step) was
adjusted to increase the accuracy of the fit for the larger
watershed. Sensitivity analysis performed for the Cattail
subwatershed indicated that this parameter could be opti-
mized at 15 iterations. In the larger watershed a better
fit was obtained by increasing the number of iterations.
At this scale we were moving water further and therefore
needed to increase water movement by increasing the
number of iterations to better simulate the short-term
high peaks. In this case, the variable linkage length
approach became crucial and significantly improved the
model performance. The simulation results after these
adjustments are presented in Fig. 14. The results still
were not as good as for the Cattail subwatershed (Table
1), however the total volumes and average flow patterns
matched well enough. This model behavior illustrates
that different scales present new emergent behavior of
the system, and that rescaling is always a delicate pro-
cess that cannot be done mechanically until there is a
greater understanding of the processes involved. Unless
adaptation to changing scale is embedded into the model
structure (e.g. the self-adjusting linkage length), running
the model at varying scales will require recalibration to
account for additional data and function that potentially
appears in the larger scales.

Of the many possible sources for changes in perform-
ance, it is likely that the spatial or temporal represen-
tation of climatic data is an important factor. In the PLM
the spatial rainfall and other data were interpolated from
daily records of 7 stations distributed over the study area.
The smaller Cattail hydrology was driven by one cli-
matic station whereas the half-watershed model incor-
porated data from 3 stations. The lack of data on the true
variability of the meteorological data in space and time
hinders the model’s ability to accurately represent short

term or localized response in river flow. However, the
general hydrologic trends seemed to be well captured by
the model.

The other model component that was significantly alt-
ered by spatial dynamics, was the nutrients module,
especially in its part that represented the fate of nitrogen
available for plants uptake. Unlike nitrogen, phosphorus
is more easily absorbed and is less available for horizon-
tal transport in terrestrial ecosystems, whereas nitrogen
is more easily dissolved and is closely related to
hydrologic fluxes. Therefore another submodel was con-
sidered that in addition to hydrology, contained the nitro-
gen module. This was the model that we referred to as
the Water Quality (WQ) submodel (Fig. 9), and which
was calibrated at the same scales and resolutions as the
hydrologic model alone. Unfortunately the data available
for dissolved nitrogen were limited to observations of
NO3 content in the estuarine part of the Patuxent river.
The northern-most point in that data set was close
enough to be extrapolated to the outlet point of the study
area in the half watershed scale. The calibration was per-
formed for this station and then for the full watershed.

Spatial dynamic output is best represented as color
animation, therefore we refer the reader to our Internet
page at http://iee.umces.edu/PLM, which further
describes the model and gives a better idea of its per-
formance.

7. Full ecological model

The multi-tier calibration approach assumes that mod-
ules can be calibrated independently, at least to a certain
extent. The hydrologic module was much more depen-
dent on the spatial implementation than the full ecologi-
cal unit model, that presented local dynamics within
particular habitat types. Therefore while most of the
hydrologic calibrations had to be carried out spatially,
the ecological unit model could be rigorously studied
and calibrated for the local conditions within the spati-
ally homogeneous cell. The calibration presented here
simulates a 10-year time period using a constant weather
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Fig. 14. Verification for the spatial hydrologic module based on the 1980–81 data for two gaging stations in the upper subwatershed. A. Nr.
Laurel station. This station is located immediately after a reservoir, which operation schedule is not accounted for in the model. This explains the
flat baseflow rate measured at summer, as well as the high flow on Day 275 caused by opening the tainter gate in the Dam; B. Nr. Bowie station.
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regime from 1986 for each year. Field monitoring at 12
forested sites located within the Eastern United States
(Johnson and Lindberg, 1992) provided mean flux rates
and organic matter nutrient contents for input and cali-
bration. Biomass and species composition for the Patux-
ent area were derived through the Forest Inventory and
Analysis Database (FIA) (Hansen et al., 1997). The for-
est association was oak-hickory with 0.6% coniferous
trees and the rest of the parameters were queried from
the database for this association. The consumer sector
was made inactive in anticipation of stronger supporting
data currently being developed.

The calibration was run for three different stages in
forest development. At the first or young stage the forest
biomass was set at 10% of the maximum attainable
biomass which is based on the 75th percentile value for
oak-hickory in the FIA. The second stage (intermediate)
was set at 50% of the maximum biomass, while the third
stage (old) was set at 90% of the maximum biomass.
Ten year averages of inorganic phosphate concentrations
(PO4 2 ), dissolved inorganic nitrate concentrations
(DIN), net primary production (NPP) (Table 2), detrital
matter and non-living soil organic matter (NLOM) (Fig.
15) are compared to similar values available through the
FIA Database for the Patuxent watershed, or literature
on temperate forests.

Similar unit calibration procedures were performed
for the other habitat types on the watershed. The PLM
currently distinguishes between 5 land use types: 1) open
water and wetlands, 2) agricultural land, 3) forests, 4)
urbanized land (which includes commercial, high density
residential and industrial land), 5) low density and
medium density residential land. After calibrating the
unit model for the 5 “habitat” types, we could start run-
ning and recalibrating the model spatially for the whole
area and for all the processes included.

The full spatially explicit ecological model, including
the full unit model and the spatial hydrologic model as

Table 2
10-year averages for three forest model variables compared to litera-
ture values

NPP
PO42(mg/l) DIN (mg/l)

(kg·M−2·Y−1)

Model output Mean SD Mean SD Mean SD
Young 0.039 0.006 0.017 0.004 4.1 5.5
Intermediate 0.29 0.014 0.025 0.019 2.7 2.6
Old 0.497 0.014 0.031 0.027 4.2 3.5
All forest ages 0.27 0.190 0.024 0.02 3.7 4.1
Reference data
All forest ages 0.14a 0.67 0.185b 0.165 5c 5

aDerived through the FIA Database for the Patuxent watershed.
bMidpoint and maximum deviation reported by Stevenson (1986) for
sandy soils.
cMidpoint and maximum deviation reported by Aber (1992) for decidu-
ous forests.

described above, was run for several years using histori-
cal climate inputs for calibration purposes. Two methods
were used to compare the model performance to the
available data. On the one hand, certain modeled vari-
ables, or indices that aggregate model variables, were
compared to point time series data. In this case spatial
dynamics were integrated into time-series data. On the
other hand, we were generating raw spatial data (map
coverages), that could be compared to data, when avail-
able.

Several time-series data sets such as streamflow, nutri-
ent concentration in the streams, and historical tree-ring
data for the region, were available to calibrate longer-
term runs of the model with these data sets. Model out-
put was compared to field data by visually inspecting
superimposed graphs and comparing annual mean and
total values.

Comparison of raw spatial data is a much more diffi-
cult and less studied procedure. Data are scarce and
rarely match the spatial extent and resolution required
by the model. One of the few spatial data sets that are
available for comparison with model output is the data
derived from Advanced Very High Resolution Radi-
ometer (AVHRR) satellite data, the Normalized Differ-
ence Vegetation Index (NDVI) or “greenness” index. It
was used to calibrate the full model’s predictions of net
primary production (NPP) and leaf area index (LAI) for
intra-annual effects. We created an index from the NDVI
data in order to compare the magnitude of NDVI change
to the magnitude of NPP and change between cells in
time and space. This was useful for qualitative spatial
calibrations. Quantitative correlation between NDVI and
biomass growth parameters such as LAI or NPP is yet
to be agreed upon, especially for terrestrial, hardwood
communities (Fassnacht et al., 1997). Visual comparison
showed fairly good agreement between the model output
and the data currently available. NDVI data for at least
a 5-year period, from 1990–1995, will be used for further
model verification. Among others, example output for
plant primary production and total photosynthetic
biomass from the model can be seen on our Web Page
(http://iee.umces.edu/PLM). It shows the typical pattern
of seasonal growth in the region.

The model development has now reached the stage
when we can start running and analyzing various scen-
arios. An example of one such experiment is presented
in Fig. 16, where we have compared the simulated flow
from Cattail Creek area under the land use patterns that
existed in 1990 with the flow that the same landscape
generated if it was completely forested (the pre-coloniz-
ation conditions). As it could be anticipated the forested
watershed produced more baseflow and lower flow
peaks.
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Fig. 15. Example of calibration results for the full unit model. Comparison of detritus and soil organic matter dynamics with 10-year mean values
found in literature.

Fig. 16. An example of a scenario run with the PLM. Simulation of waterflow from Cattail subwatershed under 1990 land use patterns and for
the all forested landscape.
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8. Conclusions

The linked ecological economic model is a potentially
important tool for addressing issues of land use change.
Because of the high complexity and large uncertainties
in parameters and processes, any numerical estimates are
intended to be used with caution; nevertheless, the model
can offer useful information to those currently address-
ing degradation of ecological systems in the Patuxent
basin. Most important, the model integrates our current
understanding of ecological and economic processes to
give the best available estimates of the effects of land
use or land management change. The model also high-
lights areas where knowledge is lacking and where
further research could be targeted for the most impact.

The high data requirements and computational com-
plexities slow model development and implementation,
but PLM tries to find a balance between the simple and
general by minimizing complexity while providing
enough process-oriented, spatially and temporally
explicit information to be useful for management pur-
poses. Spatial data is becoming increasingly available for
these types of analyses and our modeling framework is
able to take advantage of spatial and dynamic data in its
relatively raw form without being forced to use complex
spatial or temporal aggregation schemes. System dynam-
ics strongly influences ecosystem processes, with pro-
cesses changing in dominance over time; our ecological
analyses will be inadequate unless we incorporate them.
We will continue to trim model components where poss-
ible based on sensitivity analyses while maintaining the
GEM’s generality and the PLM’s explicitness.

Our experience with GEM implementation indicates
that general models should be applied with caution.
While they may be extremely useful for cross ecosystem
comparisons and intercalibrations (Fitz et al., 1996),
general models may become redundant or inadequate in
particular applications. The goal of a given study ulti-
mately justifies the application of a certain modeling
approach. In the case of large watersheds with complex
and diverse ecosystem dynamics and extensive data
requirements, the model inevitably needs fine tuning to
the peculiarities of local ecological processes and the
specifics of available information. With models of such
computational burden we want to avoid all possible
redundancies. Therefore, the approach based on mode-
ling systems and constructors that offer the flexibility of
building models from existing functional blocks,
libraries of modules, functions and processes (Voinov
and Akhremenkov, 1990; Maxwell and Costanza, 1997),
seems to be more appropriate for watershed modeling.

The Modular Modeling Language that we use offers
the promise that models of varying degrees of detail can
be archived and made available for interchange during
new model development. Then, for implementing a
model for a particular area, modules can be selected

based on the relative importance of local processes and
high detail can be used where needed and otherwise avo-
ided. The flexibility of rescaling the model both spati-
ally, temporally and structurally, allows us to build an
hierarchical array of models varying in their resolution
and complexity to suit the needs of particular studies
and challenges, from local up to global ones. With each
aggregation level and scheme chosen, we can view the
output within the framework of other hierarchical levels
and keep track of what we gain and what we lose.
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