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Abstract

General Unit Models simulate system interactions aggregated within one spatial unit of resolution. For unit models
to be applicable to spatial computer simulations, they must be formulated generally enough to simulate all habitat
elements within the landscape. We present the development and testing of a unit model for the Patuxent River
landscape in the state of Maryland, USA. The Patuxent Landscape Model (PLM) is designed to simulate the
interactions among physical and biological dynamics in the context of regional socioeconomic behavior. The PLM is
a tool for evaluating landscape change within the Patuxent watershed through simulation of ecological systems. A
companion economic model estimates land development patterns and effects on human decisions from site
characteristics, ecosystem properties, and regulatory paradigms. Landscape elements that are linked within the PLM
are forest, agriculture and open water systems, and three levels of urban development. Urban developments are low
and medium density residential areas (14.07% of the total watershed), and commercial, industrial and institutional
area (5.7%). Forests are mixed populations of deciduous and evergreen species (45.11%). Agricultural areas (28.02%)
are simulated through rotating crops of corn, winter wheat and soybeans within a cycle of two years. Open water
(6.84%) represents the ecosystems within the rivers and streams where phytoplankton are the primary producers. In
this paper we illustrate, how we gathered and formalized working models used within the Patuxent watershed for
forests, agriculture urban settings and wetlands. Further, we show how we tested and merged the variety of models
employed by scientific disciplines and created a general unit model to be used in the Patuxent Landscape Model
(Pat–GEM). The Patuxent Landscape Model is built under the Spatial Modeling Environment. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Watersheds are composites of landscape ele-
ments, which traditionally are not studied and
managed in an integrated way. Foresters study
forest, agriculture is the domain of farmers and
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agricultural scientists, and planners manage ur-
ban areas. At a landscape scale all these man-
agement objectives and scenarios for the
individual landscape elements are linked.

Studying the workings of systems through sci-
entific observation requires recognition and for-
mulation of models for hypothesis testing. The
underlying objective for landscape modeling is to
create tools that allow a more integrated man-
agement of landscapes through simulation of in-
teractions between landscape elements. To go
from specialized management to a more inte-
grated approach, the gap between the working
models of observers specialized in single land-
scape elements and the entire landscape needs to
be bridged (Fig. 1).

Computer landscape simulation is a logical
method for the integrated approach between dis-
ciplines due to its ability to handle large
amounts of data and information and to provide
output aggregated for easy interpretation. The
complexity introduced with large amounts of
data and information very likely creates non-lin-
ear behavior, which in turn obscures the inter-
pretation of the model output. Throughout this

paper we present how confidence can be gained
for simulation results from complex unit models.

1.1. General unit models

Landscape simulations require the formulation
of general unit models for simulation of tempo-
ral processes (Fig. 2; Fitz et al., 1995). Dynam-
ics for general models are by definition not
habitat specific. Discrimination between habitats
is accomplished by applying habitat specific ini-
tializations of stocks and parameters. General
models in contrast to unique habitat specific
models, ease the computational challenges in
representing landscape dynamics at the higher
resolutions (Fitz et al., 1995; Running and
Coughlan, 1988; Running and Gower, 1991;
Parton et al., 1994). Landscape models that do
not make use of general models often are spe-
cialized for one habitat (e.g. forest models; Run-
ning and Gower, 1991; Band et al., 1991) or
assume large aggregations of the landscape
(Baker, 1989). The challenge is to create unit
models that can easily be scaled to higher and
lower resolutions in time and space.

Fig. 1. Extrapolation of site-specific data derived from field monitoring to provide information at a larger spatial and temporal scale.



R.M. Boumans et al. / Ecological Modelling 146 (2001) 17–32 19

Fig. 2. Schematic of a landscape model.

1.2. Model description

Pat–GEM was developed to be the ecological
model and non-spatial building unit for the spa-
tial Patuxent Landscape Model (PLM). PLM cov-
ers ecological-economic dynamics of the 2500 km2

Patuxent river watershed in Maryland and inte-
grates data and knowledge over several spatial,
temporal and complexity scales in order to aid
regional management. The PLM effort is an out-
growth of a model first developed for Louisiana
wetlands and later expanded and applied to the
Florida Everglades (Costanza et al., 1990; Fitz
and Sklar, 1999). PLM is the first implementation
of the full ecological model in an upland setting
and includes hydrology, nutrients, plants, animal
populations, and human economic systems. The
landscape is depicted as a grid of cells with a
minimum cell size of 200×200 m2 to allow ade-

quate depiction of the pattern of ecosystem pro-
cesses and human settlement on the landscape.

Pat–GEM includes modules for hydrology, nu-
trient movement and cycling, terrestrial and estu-
arine primary productivity, and general consumer
dynamics (Fig. 3). The hydrology module of the
unit model is a fundamental component for other
modeled processes, simulating water flow verti-
cally within the cell (e.g. infiltration, evapotran-
spiration). Phosphorus and nitrogen are cycled
through plant uptake and organic matter decom-
position, with the latter simulated in a sediment/
soil dynamics module. The macrophyte module
includes plant growth response to various envi-
ronmental constraints (including water, light and
nutrient availability and seasonal temperatures),
changes in leaf canopy structure (influencing wa-
ter transpiration), mortality and translocations of
photosynthetic product. The principal dynamics
modeled in Pat–GEM are:
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plant and phytoplankton growth in response to
available sunlight, temperature, nutrients, and
water;
animal (consumers) growth in response to food
sources;
dynamics in detrital matter;
dynamics in soil organic matter;
flow of water plus dissolved nutrients in three
dimensions.
Feedbacks among the biological, chemical and

physical model components are important struc-
tural attributes to the model. While the unit
model simulates ecological processes within a unit
cell, horizontal fluxes link the cells together across
the landscape to form the full landscape model.
These spatial fluxes are driven by cell-to-cell head
differences of surface and ground water in satu-
rated storage. Water fluxes between cells carrying
dissolved and suspended materials for simulating
water quality in the landscape.

1.3. Calibration/�erification of unit models

Pat–GEM is a complex process-based simula-
tion model. Models such as Pat–GEM are in-
creasingly needed in predictive, site-specific

environmental research (Band et al., 1993;
Costanza et al., 1993; Wigmosta et al., 1994;
Baron et al., 1998; Creed and Band, 1998). In-
creasing complexity causes the number of solu-
tions within the parameter space to grow
exponentially with the number of unknown
parameters, and finding a unique solution through
calibration at the complexity of Pat–GEM, with
21 state variables and 37 unknown parameters, is
virtually impossible (Beven and Binley, 1992;
Beven, 1993). Instead of narrowing down to one
unique solution within the parameter space, we
applied whole system tests for conservation of
mass and robust behavior, and applied a newly
developed Model Performance Index (MPI) (Fig.
4). We also utilized a set of exploratory tech-
niques (Villa et al., 2001) to isolate multiple areas
within the parameter-space that produce agree-
ments between model simulation output and
available systems information.

Theoretical problems with calibrating complex
models is highlighted by Villa et al. (1998) who
developed and applied a computer aided search
algorithm for exploring model parameter spaces,
and compared these explorations against more
usual methods of calibration such as eyeballing,

Fig. 3. Material flows between ecosystem components as modeled within a Pat–GEM unit.
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Fig. 4. Calibration process using MPI and systematic optimizations of unknown parameters to improve confidence in unit model
performance.

hill climbing and Monte Carlo experiments. Villa
et al. (1998) found that as the number of un-
known parameters increases, the number of areas
that can be discriminated within the parameter
space to fit the same observed data is also increas-
ing. When less is known of a modeled system,
systematic calibration of complex models will re-
veal more potential solutions. Consequently, non-
systematic calibrations, such as ‘eye balling’, have
been inconclusive as methods for exploring the
total potential parameter space.

2. Methods

2.1. Model applied

Pat–GEM was developed from the GEM
model presented by Fitz et al. (1995). Develop-
ment of the GEM was mostly for simulating
wetland dynamics, emphasizing and elaborating
on water column dynamics in mostly estuarine
environments. With Pat–GEM we shifted focus
to the dynamics of more terrestrial and human
dominated habitats such as forests, agricultural
lands and urban areas. This shift in focus not only
required changes to settings of the parameter

values, but also brought about more general ap-
proaches regarding how these parameters influ-
enced the ecosystem properties. Applying the
GEM model to additional alternative settings will
continue this generalization process of modeling
ecosystem processes.

The important objective after constructing Pat–
GEM was to gain confidence in simulation out-
puts for mimicking the ecological, physical and
biological processes that are of importance to the
dynamics within the Patuxent watershed. Apply-
ing innovative strategies for unit model calibra-
tion, we learned about the limits of applicability
and the range of behaviors exhibited by Pat–
GEM, and we narrowed down the areas in the
parameter space that are most likely to represent
Patuxent watershed habitats. We discovered tem-
poral scalability variations among variables and
tested for conservation of materials.

2.2. Robustness

The unit model was tested for scalability across
time (robustness). Pat–GEM simulations were ex-
ecuted at seven different time steps ranging from 2
h to 8 days. Model output from simulations di-
verting from the one-day time step for which the
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model was calibrated, were regressed against the
one-day time step output (Table 1).

Poorly robust behavior in some of the state
variables such as nitrogen did not cause similar
poor behavior in state variables that track long
term changes within a system such as soil organic
matter in terrestrial ecosystems. Overall, state
variables with low frequency dynamics were most
predictable. Table 1 shows the results of the ro-
bustness tests for a selection of Pat–GEM state
variables. Robust behavior varied between state
variables and within state variables among lan-
duses. For example, biomass in agricultural land
uses could be reproduced at the higher resolution
time steps (intercept 0, slope 1), but missed the
day on which farmers planted crops at lower
resolutions. The deciduous nature of the forest
proved forest biomass to be time step sensitive
due to the fast processes during the short periods
of the year of greening up and litterfall. In com-
parison, urban lawns were more robust. The least
robust was the biomass stock in open water habi-
tat that is mainly modeled as phytoplankton, a
biomass stock very sensitive to erratic behavior in
surface water nutrient concentrations.

Interesting differences in robust behavior are
illustrated by the two nutrients, nitrogen and
phosphorous. While phosphorous behaves fairly
robustly, nitrogen performed poorly. Pat–GEM
recognizes the immobile stage of inorganic phos-
phorous in the soil, but not of nitrogen. Conse-
quently, nitrogen concentrations are more
sensitive to hydrologic events which are fast
paced, in comparison to the buffered phospho-
rous concentrations.

2.3. Conser�ation of materials

Pat–GEM was tested for conservation of mate-
rials. Pat–GEM lumps organic carbon, nitrogen
and phosphorous within the state variable
‘biomass’, while accounting separately for inor-
ganic nitrogen and phosphorous. Conversions be-
tween organic and inorganic states are derived
through assigning parameters for carbon to nitro-
gen to phosphorous ratios. Unless materials are
represented by state variables through all configu-
rations (e.g. inorganic and organic states), calibra-

tion of C:N:P ratios are required to balance
material influxes, outfluxes and stocks to comply
with the law of conservation of mass. In Pat–
GEM, no state variables are assigned to variation
in inorganic carbon, nor are the dynamics of
oxygen and trace minerals included.

Calibrations carried out for forest simulations
showed that nutrient ratio parameters could be
found to ensure conservation of mass within an
acceptable margin of error. After calibration,
losses or gains never exceeded 0.0012% for phos-
phorous or 0.0002% for nitrogen at any time
during a two-year simulation. Regrettably, these
calibrated results were very sensitive to new set-
tings in other areas of the parameter space so that
re-calibration of the nutrient ratios is required for
each new implementation of the model.

Although material ratios in phytoplankton are
considered very stable (e.g. Redfield ratios) other
systems have worked out mechanisms to concen-
trate nutrients in the living part of the organic
matter while depleting the non-living part. For
example, nutrients in trees are concentrated under
the bark and in the leaves. When this tissue dies
and becomes wood, nutrients are recovered for
use by non-woody parts. A similar recapturing of
nutrients takes place during coloring and shed-
ding of leaves in the fall. From this example, we
learn that when forests grow in age (more stand-
ing wood) nutrient to carbon ratios decline (Par-
ton et al., 1988; Vitousek et al., 1988). Increase in
nutrient ratios occur within the transformation
from detritus to soil organic matter. Given the
right temperature and moisture conditions the
microbial organisms that carry out the decompo-
sition will sequester the nutrients while respiring
the carbon causing a change in nutrient ratios.

2.4. Exploration of the parameter space

Pat–GEM model’s behavior was extensively in-
vestigated across its parameter space, representing
four of the habitats commonly found within the
Patuxent watershed. This exercise was to: (1) un-
derstand the limits of applicability and range of
behaviors exhibited by the model with parameter
change; and (2) reduce the dimensionality of the
parameter space, pointing out the most sensitive
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Table 1
Model output from simulations diverting from the one-day time step for which Pat–GEM was calibrated, were regressed against the one-day time step output a

BiomassDT Inorganic nitrogen Inorganic phosphor Soil organic matter

Intercept SD Slope SD Intercept SD Slope SD InterceptDay SD Slope SD Intercept SD Slope SD

Agriculture
0.19 −0.04 0.940.125 −0.02 10 698 −3360 −4.3 −8.9 0 0 0.81 −0.1 0.37 −0.03 0.96 −0.01
0.2 −0.04 0.96 −0.02 3759 −1040 −1.5 −2.80.25 0 0 0.82 −0 0.2 −0.03 0.98 0

0.5 0.19 −0.04 0.98 −0.02 610 −208 −0.2 −0.6 0 0 0.82 −0 −0.01 −0.02 1.01 0
0.07 −0.12 0.53 −0.08 9 −4 −2.0×10−3 −0.01 0 0 0.31 −0.3 0.28 −0.032 0.96 −0.01

4 −2 −5.0×10−4 −0.0044 0 0 0.18 −0.7 −1.93 −0.06 1.26 −0.01
8 4 −2 −2.0×10−3 −0.004 0 0 −0.07 −0.1 −1.51 −0.05 1.2 −0.01

Forest
25.2 −1.71 0.16 −0.06 36 888 −12 000 −7.0×10−2 −0.22 0 0 0.93 −0 2.03 −0.22 0.890.125 −0.01
13.5 −1.02 0.55 −0.03 13 117 −3800 −3.0×10−2 −0.070.25 0 0 0.94 −0 0.78 −0.23 0.96 −0.01

4.23 −0.29 0.86 −0.01 2163 −748 −4.0×10−3 −0.010.5 0 0 0.96 −0 1.05 −0.12 0.94 −0.01
39.21 −3.86 −0.3 −0.13 129 −48 −2.0×10−4 −0.00092 0 0 −0.39 −0.3 4.1 −0.66 0.77 −0.04
41.7 −3.75 −0.39 −0.12 38 −18 −2.0×10−5 −0.0003 0 0 −0.59 −0.4 −1.36 −0.8 1.084 −0.04
40.09 −3.48 −0.34 −0.12 16 −6 −3.0×10−5 −0.00018 0 0 −0.82 −0.3 −2.53 −0.66 1.14 −0.04

Urban
−0.01 −0.01 1.04 −0.04 14 765 −4790 −3.4 −8.030.125 0 0 0.8 −0.1 2.26 −0.08 0.9 0
−0.01 −0.01 1.05 −0.04 5291 −1520 −1.2 −2.55 0 0 0.8 −0.1 1.76 −0.06 0.920.25 0
−0.02 −0.01 1.13 −0.04 877 −302 −0.2 −0.510.5 0 0 0.82 −0.1 1.03 −0.03 0.95 0
−0.02 −0.01 1.06 −0.06 3.0×1012 −3.0×1012 −7.0×108 −5.3×1092 0 0 0.9 −0.2 1.27 −0.08 0.94 0
−0.11 −0.02 1.85 −0.15 7 −3 5.0×10−4 −0.014 0 0 1.35 −0.5 −5.29 −0.13 1.24 −0.01
−0.02 −0.01 1.1 −0.06 4 −2 −9.0×10−4 0 08 0 −0.03 −0 −4.44 −0.13 1.2 −0.01

Open water
0 0 0.01 −0.01 2.0×10−5 −5.0×10−50.125 1 0 0 0 1 0
0 0 0 −0.01 2.0×10−5 −4.0×10−50.25 1 0 0 0 1 0
0 0 0.01 −0.02 2.0×10−5 −3.0×10−5 1 00.5 0 0 1 0

2 0 0 0.32 −0.46 2.0×10−3 −3.0×10−4 0.9 −0.01 0 0 0.99 0
0 0 4.93 −1.61 3.0×10−3 −4.0×10−4 0.7 −0.024 0 0 0.98 −0

8 −0.02 −0.01 42.4 −19.9 5.0×10−3 −4.0×10−4 0.2 −0.02 0 0 0.97 −0

a Most robust variables show intercepts closest to 0 and slopes closest to 1.
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parameters, to obtain maximal calibration effi-
ciency and highlight feasible areas on which to
concentrate investigation.

To carry on this investigation, we exploited the
Model Performance Index framework described
in Villa et al. (1998). This framework allows the
definition of a model’s parameters function (from
now on called the objective function) expressing
the agreement of quantitative data and semi-
quantitative hypotheses about the model’s ex-
pected behavior with the model’s output.
MPI-based objective functions are used to explore
the parameter space under different viewpoints,
from simple feasibility of the output to exact
matching of particular data sets. A number of
search techniques were used, from Monte Carlo
exploration to global optimizations using genetic
algorithms.

The sensitivity of the MPI scores for state
variables to particular individual parameters is
very dependant upon a total configuration of the
objective function, and no general conclusion can
be drawn about the effect of parameter changes
without considering this overall objective function
context. But simply knowing the proportion of
cases that particular parameters were influential
for changes to state variables for many configura-
tions of the objective function is obviously impor-
tant to the investigator. The influence plot in Fig.
5 shows this proportion for single parameter ef-
fects and two-way interaction effects. The effect
of each parameter is detailed for each single vari-
able. As the plot shows, most effects are signifi-
cant only in a minority of cases, which further
demonstrates the complex nature of the model’s
response. However, some parameters seem to infl-
uence the variables’ MPIs in most cases. With the
help of the influence plot, the experimenter can
check at a glance whether a change in a parameter
is likely to improve the MPI score for a variable,
which other variables are likely to be involved,
and which other parameters are likely to be in-
volved in the effect. This proves to be essential in
forming the next step in the calibration process.
Parameters which do not seem to have an effect
can be excluded from the next search to save on
computational time, using their maximum likeli-
hood estimates. Parameters and their interactions

which appear to have an effect in the majority of
cases can be further investigated until a better
calibration point is found. This can be used as the
initial guess for a new automated search cycle,
maybe with redefined parameter boundaries and
sensitivities to narrow the search space.

2.5. Calibration experiments

During the analysis of many search cycles, Ex-
ploratory Data Analysis (EDA) techniques and
careful use of data reduction are useful to over-
come the complexity due to the multivariate na-
ture of the response surface. To help this process,
we have designed a suite of tools, which quickly
allow us to interactively generate specific plots
according to specific needs. After determining that
the combined effect of two parameters is worth
exploring by looking at the influence plot, more
quantitative knowledge about these particular ef-
fects can be sought by plotting the MPI values as
a function of parameter value.

We explored the potential for subdivision of the
parameter space to carry out multiple calibrations
at reduced complexities. Subsets in the parameter
space were identified, and parameters clustered
around their most likely to be influenced vari-
ables. In addition, we separated those parameters
that introduced the highest levels of complexity
and gave them fixed values to simplify analysis of
the remaining parameter space.

Initially, a large sample of 71 from the 128-di-
mensional PLM parameter space was selected for
exploration. Parameter space dimensions that in-
volved processes between cells (spatial parameters
exclusively linked to hydrology), parameters de-
signed for specific scenarios, and parameters in-
volved in processes that are not likely to be within
a forested habitat at the 200 m resolution were
not explored. The 71 parameters were assigned
maximum and minimum boundaries and sub-
jected to an initial exploration for sensitivity using
genetic algorithms (Wang, 1997). An additional
43 parameters were excluded when they proved to
be insensitive on the overall modeling results.

After parameter space complexities were ex-
plored and reduced to manageable and influential
proportions we applied the MPI search al-
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gorithms to fit the GEM models against measured
data. As we explored a remaining 37-dimensional
parameter space (Fig. 5; Table 2), we found
macrophyte variables for Net Primary Productiv-
ity and Leaf Area Index (Fig. 6) most sensitive to
parameter changes. Variables and test criteria se-
lected are presented in Table 3. Least sensitive
were material fluxes associated with mortality of

photosynthetic and non-photosynthetic macro-
phyte biomass, the translocation of photosyn-
thetic materials from the leaves to the roots, and
the stock in non-photosynthetic carbon. Some
sensitivity was observed for consumption of non-
photosynthetic tissues.

We found that the Leaf Area Index in the PLM
is most efficiently calibrated using single parame-

Fig. 5. Portion of the influence plot for the data calibration experiments. Each box contains a bar plot summarizing the proportion
of significant effects found for a particular parameter or parameter interactions on each variable’s MPI. The length of each bar is
proportional to the number of search cycles where the second-degree polynomial regression of the variable’s MPI versus the
parameter value has been significant at the 95% level. Diagonal elements show single-parameter effects and sub-diagonal elements
show two-way interaction effects between parameters. The plot has been generated with data coming from the F calibration
experiments.
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Table 2
Pat–GEM parameter values a

Initial value BoundariesParameters Calibrated valueUnits

Lower Upper

Consumer module
Consumer assimilation rate 1 d−1 0.5 0 (o) 1 (o) 0.15

1 0.1Maximum consumer biomass (c)kg m−2 100 (c) 5.9895
0.175 0 (o) 11 d−1 (o)Consumer ingestion rate 0.175

1 d−1consumer mortality rate 0.014 0 (o) 1 (o) 0.003
Consumer respiration rate 0.031 d−1 0 (o) 1 (o) 0.03

30 20 (c) 40 (c)C 28Opt temperature for consumer activity

Detritus module
0.00015 0 (c) 1 (c) 0Detrital decay rate 1 d−1

5 0 (o) 100kg m−2 (o)Initial stock for detritus 5
Rate in detrital shredding 0.011 d−1 0 (c) 1 (c) 1

Module for dissol�ed inorganic nitrogen in soils
0.3 0Concentration gradient (o)Dimless 1 (o) 0.8
0.2 0 (c) 0.51 d−1 (c)Mineralization rate 0.5

DimlessNH4 porportion of the inorganic nitrogen 0.5 0 (o) 1 (o) 0.5
DimlessSoil organic matter N:C ratio 0.066 0 (o) 0.1 (o) 0.067

0.01 0 (o) 0.1Dimless (o)Photobiomass N:C ratio 0.001

Module for soil dead organic matter
0.5 0.1 (c) 0.9Dimless (c)Detrital biomass C concentration 0.42

Initial value for organic matter porosity Dimless 0.2 0 (c) 0.9 (c) 0
% 0.5 0 (c) 0.9Initial value for percent organic matter in (c) 0.05

soils
mDepth of the organic matter soil horizon 0.5 0 (o) 10 (c) 0.5

Hydrology module
0.5 0.1Initial soil moisture (c)% 0.9 (c) 0.3008

Maximum canopym conductivity Dimless 0.5 0 (o) 1 (o) 0.5

Macrophytes module
0.5 0 (o) 0.91 d−1 (c)Biomass recovered before leaf litter fall 0.5

hDaylength required for plant growth 13.5 0 (o) 24 (o) 9.42
0.2Nitrogen uptake rate 01 d−1 (o) 1 (o) 0.15
0.003 0 (o) 11 d−1 (o)Phosphor uptake rate 0.003

LangleysLight saturation point 600 0 (o) 1000 (o) 600
CPlant optimum growth temperature 31 20 (c) 40 (c) 21

35 10 (o) 50Dimless (o)Ratio above and below biomass 40
0.5 0.1 (c) 0.9 (c) 0.5Ratio photo to non-photo biomass Dimless
3.6 0 (c) 10Dimless (c)Ratio above to below non-photo biomass 3.6

kg m−2Non-photosynthetic biomass 30 0 (c) 100 (c) 23
Photosynthetic decomposition rate 0.00051 d−1 0 (c) 1 (c) 0

0.1 0 (c) 1 (c)1 d−1 0.99leaf litter rate

Module for soil phosphor
0.0108 0.01 (c) 0.09 (c) 0.01Photobiomass P:C ratio Dimless
0.3 0 (c) 0.9Dimless (c)Concentration gradient 0.3

kg m−3Equilibrium conc. for mobile phosphor 0.03 0 (o) 0.1 (c) 0.03
0.003 0 (c)Initial concentration 1kg m2−2 (c) 0
0.2 0 (o) 11 d−1 (c)Absorption rate for mobile phosphor 0.2

a Initial rates are hand calibrated values, boundaries are expected maxima and minima, while calibrated values were derived
through the MPI search algorithms (MPI=0.29) (Villa et al., 2001).
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ters within the macrophyte module. We also found
important parameter interactions between the con-
sumer and macrophyte modules, soil organic mat-
ter and macrophyte modules, and among
macrophyte parameters. Table 4 shows the fre-
quency distribution of single parameters and

parameter combinations.
Net Primary Productivity is sensitive to single

parameters within the macrophyte, soil organic
matter, consumer and nitrogen modules. Important
parameter interactions occur between the
macrophyte and consumer modules, soil organic

Fig. 6. Panel A shows the most successful parameter update sequence during the execution of the MPI search algorithm for
Pat–GEM forest applications. Individual variable agreements with assigned test requirements (partial MPI) are evaluated against
collective variable test agreement (global MPI). Panel B shows model agreement between NDVI values and Net Primary
Productivity after eyeballing (the initial guess), after the most successful update sequence (MPI=0.29), and after a less successful
update sequence (MPI=0.13).

Table 3
Variables, test criteria and data sources as the observation space for calibration of forest habitat within the Pat–GEM

ReferenceTest assignedVariable Data

Detritus module
Wbounds Min=0.3; max=6.6Detritus biomass Johnson and Lindberg, (1992)

Module for dissol�ed inorganic nitrogen
N in soil McFarland, (1995)Time seriesTheil

Soil organic matter module
Soil organic matter Wbounds Min=7; max=34

Macrophyte module
Wbounds Min=0; max=9 Johnson and Lindberg, (1992)Leaf area index
WboundsNon-photo biomass Min=2.5; max=42 FIA database
WboundsPhoto biomass FIA databaseMin=0.1; max=3.5

NDVITime seriesNet primar prod. Freq

Phosphor module
P in soils Time seriesTheil McFarland, (1995)
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Table 4
Frequency distributions of single parameters and parameter combinations

10–19 30–3920–29 40–49 50–60

Nitrogen uptakeN:C soil organic matter Organic soilConsumer assimilation Plant daylength
requireddepth

Initial detritis Plant opt growth MineralizationInitial soilConsumer
tempassimilation×mineralization moisture

Initial detritis×plant daylength Non-photoInitial OMConsumer assimilation×initial soil
moisture required biomassporosity

Initial detritis×organic soil depth PhosphorousMax consumer biomass Leaf litter
uptake

Initial OM porosity×initial soil Detrital CInitial detritis×initial OM porosity
moisture

Plant daylength required×nitrogen Decomposition of photo
uptake materials

Plant daylength
required×non-photo biomass

Mineralization×photobiomass N:C
ratio

Mineralization×initial soil moisture
Mineralization×initial OM porosity
Mineralization×plant opt growth

temp
Mineralization×leaf litter
Consumer ingestion×organic soil

depth
Consumer ingestion×mineralization
Consumer ingestion×initial soil

moisture
Consumer ingestion×non-photo

biomass
Max consumer biomass×plant

daylength required
Max consumer

biomass×mineralization
Max consumer biomass×initial soil

moisture
Max consumer biomass×initial

OM porosity
Max consumer

biomass×non-photo biomass
Photobiomass N:C ratio
Consumer mortality
Opt temp for consumers
Initial soil moisture×plant

daylength required
Initial soil moisture×nitrogen

uptake
Initial soil moisture×phosphorous

uptake
Max canopy conductivity
Initial OM porosity×plant

daylength required
Initial OM porosity×plant opt.

growth temp
Initial OM porosity×non-photo

biomass
Detrital C×initial OM porosity
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matter and nitrogen modules, detritus and
hydrology modules, and among macrophyte
module parameters.

2.6. Pat–GEM calibrations for four habitats within
the Patuxent watershed

PLM land uses are aggregated into six separate
categories of which three are within different urban
settings. Unit model calibrations explored the
parameter space to represent characteristics found
in forest, agriculture, open water and urban set-
tings. The paper presents only examples carried out
for forests. Data sources upon which we have based
our assumptions for correct model behavior are
presented in Table 2. Explorations on relevant
areas in the parameter space of the Pat–GEM
model for agricultural urban areas and wetlands

are within various stages of completion (Fig. 7).
Development and calibration of General Ecosys-
tem Models runs parallel to the advancements that
take place within the various fields of science
dedicated to individual habitat types. Changes in
paradigms will lead to the adjustment of General
Ecosystem Model dynamics, while new observa-
tional information on parameters will further nar-
row our unknown parameter space. New
observations in time and space will expand the test
criteria that are available for calibration.

3. Discussion

We presented methods and results that were
designed to help increase and report the confidence
in output from models that are too complex for

Fig. 7. Pat–GEM unit model output for six state variables and four habitat types. Outputs in kg m−2 for all variables are seasonal
dynamics at one-day time steps over a 365 day period.
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applying conventional means of calibration and
verification. Our model, derived from less complex
models based upon careful observation of time and
space specific phenomena, is intended for simulat-
ing ecological processes in the Patuxent watershed.
The attempt to cover within one model, all poten-
tial habitats under all conditions not only caused
expansions in the unknown area of the parameter
space, but also reached levels of complexity and
non-linear behavior such that conventional tech-
niques for means of building confidence were
inappropriate. Through our experiments, invalu-
able information was gathered on how to improve
complex model calibrations and report the results
objectively.

Confidence levels remained low after applying
the tests on conservation of mass. Pat–GEM is
intended for use in spatial modeling, where each
pixel in the landscape represents a unique combina-
tion of parameters. Additional calibration to have
each unique combination meet conservation of
mass requirements is cumbersome. The question is
raised as to whether the computational benefits
expected from lumping the organic nutrient frac-
tions in the biomass weights justify the calibration
efforts that are needed to satisfy the law of conser-
vation of mass. The error can be noted but ignored
assuming the existence of a non-modeled nutrient
pool that functions as capacitor. A likely candidate
for the function could be the non-modeled micro-
bial biomass.

Confidence gained from the parameter search
routines was subject to pre-calibration conditions
of the availability and quality of the information
and data available for testing. Reporting this sub-
jectivity provided the means upon which confidence
levels between complex models can be compared.
Before testing a complex model such as Pat–GEM,
an observational space will need to be defined.
Testing output against observations is the most
powerful means to gain confidence in model predic-
tions. The Pat–GEM model potentially can be
tested against 76 different categories of observa-
tions (total sum of stocks and fluxes) and most
confidence would be gained when all stocks and
fluxes would agree with data from observations.
Unfortunately, for a large subset of the 76 stocks
and flows in the Pat–GEM, there were no observa-

tions, no data from observations, or no compatible
data from observations. Good agreement on a few
categories of observational data could give a false
sense on the complete goodness-of-fit when other
properties of the model were not tested at all.

A calibration specific formulation of the MPI is
defined within an a priori observational space, not
only in quantity, e.g. how many of the stocks and
flows are being tested, but also in quality. Quality
statements are for the individual fluxes or stocks
and are imbedded when a particular statistical test
is assigned, as well as in the weighting of the test
results in the ultimate index. For example, more
confidence is gained when one of the model outputs
is able to track a time series expressed in compatible
units, measured at time intervals similar to the
model time step (thiel test), than when a particular
model output is not exceeding boundary conditions
(boundary test). On the other hand, if the data
quality of the time series is questionable while the
boundary conditions are firm, more confidence
should be assigned to the results of the boundary
test.

3.1. The narrowing of the parameter space

Confidence can be gained for complex simulation
models when the objective function can be reduced
to only the most important dimensions. Villa et al.
(1998) found that with increasing numbers of
unknown parameters the number of potential areas
in the parameter space for fitting the model output
to the observational space also increased. Although
this opens up an important discussion on how
natural phenomena classified similarly through
observation can have very different underlying
dynamics and building confidence in the model
output requires systematic narrowing of the
parameter space before calibration. How the
parameter space is narrowed is important informa-
tion for judging calibrations. As in defining the
observational space, the a priori explanation of the
quality and quantity of the known parameter space
and how non-relevant and insensitive parameters
are identified create yet another dimension to the
confidence level expectancy.

Confidence was gained when the Pat–GEM
parameter space, reduced for forests, showed no
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surprises for the remaining parameters and
parameter variable interactions with respect to the
literature on forest dynamics (Gholtz et al., 1994;
Reichle, 1981; Vitousek et al., 1988). After assign-
ing values to 34 parameters to be known of no
consequence to either forest or non-spatial dy-
namics, we were still left with 37 unknown
parameters. Because Villa et al. (1998) found in
the complex model they explored, a maximum
allowable number of nine unknown parameters,
we searched the records on the successful hill
climbing attempt for those parameters that were
most influential for improving upon the overall
MPI score (Fig. 5). Different definitions of the
observation space undoubtedly will expose differ-
ent sets on influential parameters. Extra confi-
dence is gained when calibrations for
observational spaces, defined within habitat, bring
forward tendencies in parameter variable interac-
tions that can be recognized by habitat experts.

4. Final conclusion

More detailed classification through hierarchi-
cal schemes applied to landscape models (Mitsch,
1992; Lavorel et al., 1995; Michaelsen et al., 1994)
will have to be followed up with more specific
calibrations of complex unit models. Not only will
we want a calibration for a generic forest; eventu-
ally we will want to know about available obser-
vations, objective function reductions and
attainable MPI scores for deciduous and conifer-
ous forests.
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