IN THEIR REPORT “ETHANOL CAN CONTRIBUTE TO ENERGY AND ENVIRONMENTAL GOALS” (27 JAN., P. 506), A. E. Farrell and colleagues offer hopeful opinions about corn-based ethanol. Their analysis suggests that, since the ratio of ethanol produced to fossil fuel used is positive, ethanol should be further developed. If replacing oil is our goal, we must look at two parameters of this approach: (i) energy return on investment (EROI) including environmental impacts on soil, water, climate change, ecosystem services, etc.; and (ii) scalability and timing. Farrell and colleagues’ most optimistic EROI of 1.2:1 (which does not include tractors, labor, or environmental impacts) implies that we need to produce 6 MJ of ethanol to net 1 MJ of energy for other endeavors. Thus, the yield of ethanol would not be 360 gallons per acre gross yield, but rather a mere 60 gallons per acre net yield, not even two fill-ups for an SUV. The entire state of Iowa, if planted in corn, would yield approximately five days of gasoline alternative.

To devote half the nation’s corn crop to ethanol would require an input of 3.42 billion barrels of oil (almost half our current national use) to net 684 million barrels of “new” ethanol energy. We would also lose food and soil nutrients, suffer ecosystem damage, and use massive amounts of water for irrigation.

We need alternative energy. But ethanol from corn is neither scalable nor sustainable. Let’s pursue better options.

NATHAN HAGENS, ROBERT COSTANZA, KENNETH MulDER
Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.

IN THEIR REPORT “ETHANOL CAN CONTRIBUTE TO ENERGY AND ENVIRONMENTAL GOALS” (27 JAN., P. 506), A. E. Farrell and colleagues offer hopeful opinions about corn-based ethanol. Their analysis suggests that, since the ratio of ethanol produced to fossil fuel used is positive, ethanol should be further developed. If replacing oil is our goal, we must look at two parameters of this approach: (i) energy return on investment (EROI) including environmental impacts on soil, water, climate change, ecosystem services, etc.; and (ii) scalability and timing. Farrell and colleagues’ most optimistic EROI of 1.2:1 (which does not include tractors, labor, or environmental impacts) implies that we need to produce 6 MJ of ethanol to net 1 MJ of energy for other endeavors. Thus, the yield of ethanol would not be 360 gallons per acre gross yield, but rather a mere 60 gallons per acre net yield, not even two fill-ups for an SUV. The entire state of Iowa, if planted in corn, would yield approximately five days of gasoline alternative.

To devote half the nation’s corn crop to ethanol would require an input of 3.42 billion barrels of oil (almost half our current national use) to net 684 million barrels of “new” ethanol energy. We would also lose food and soil nutrients, suffer ecosystem damage, and use massive amounts of water for irrigation.

We need alternative energy. But ethanol from corn is neither scalable nor sustainable. Let’s pursue better options.

NATHAN HAGENS, ROBERT COSTANZA, KENNETH MulDER
Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.

IN THEIR REPORT “ETHANOL CAN CONTRIBUTE TO ENERGY AND ENVIRONMENTAL GOALS” (27 JAN., P. 506), A. E. Farrell and colleagues offer hopeful opinions about corn-based ethanol. Their analysis suggests that, since the ratio of ethanol produced to fossil fuel used is positive, ethanol should be further developed. If replacing oil is our goal, we must look at two parameters of this approach: (i) energy return on investment (EROI) including environmental impacts on soil, water, climate change, ecosystem services, etc.; and (ii) scalability and timing. Farrell and colleagues’ most optimistic EROI of 1.2:1 (which does not include tractors, labor, or environmental impacts) implies that we need to produce 6 MJ of ethanol to net 1 MJ of energy for other endeavors. Thus, the yield of ethanol would not be 360 gallons per acre gross yield, but rather a mere 60 gallons per acre net yield, not even two fill-ups for an SUV. The entire state of Iowa, if planted in corn, would yield approximately five days of gasoline alternative.

To devote half the nation’s corn crop to ethanol would require an input of 3.42 billion barrels of oil (almost half our current national use) to net 684 million barrels of “new” ethanol energy. We would also lose food and soil nutrients, suffer ecosystem damage, and use massive amounts of water for irrigation.

We need alternative energy. But ethanol from corn is neither scalable nor sustainable. Let’s pursue better options.

NATHAN HAGENS, ROBERT COSTANZA, KENNETH MulDER
Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.

IN THEIR REPORT “ETHANOL CAN CONTRIBUTE TO ENERGY AND ENVIRONMENTAL GOALS” (27 JAN., P. 506), A. E. Farrell and colleagues offer hopeful opinions about corn-based ethanol. Their analysis suggests that, since the ratio of ethanol produced to fossil fuel used is positive, ethanol should be further developed. If replacing oil is our goal, we must look at two parameters of this approach: (i) energy return on investment (EROI) including environmental impacts on soil, water, climate change, ecosystem services, etc.; and (ii) scalability and timing. Farrell and colleagues’ most optimistic EROI of 1.2:1 (which does not include tractors, labor, or environmental impacts) implies that we need to produce 6 MJ of ethanol to net 1 MJ of energy for other endeavors. Thus, the yield of ethanol would not be 360 gallons per acre gross yield, but rather a mere 60 gallons per acre net yield, not even two fill-ups for an SUV. The entire state of Iowa, if planted in corn, would yield approximately five days of gasoline alternative.

To devote half the nation’s corn crop to ethanol would require an input of 3.42 billion barrels of oil (almost half our current national use) to net 684 million barrels of “new” ethanol energy. We would also lose food and soil nutrients, suffer ecosystem damage, and use massive amounts of water for irrigation.

We need alternative energy. But ethanol from corn is neither scalable nor sustainable. Let’s pursue better options.

NATHAN HAGENS, ROBERT COSTANZA, KENNETH MulDER
Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.

IN THEIR REPORT “ETHANOL CAN CONTRIBUTE TO ENERGY AND ENVIRONMENTAL GOALS” (27 JAN., P. 506), A. E. Farrell and colleagues offer hopeful opinions about corn-based ethanol. Their analysis suggests that, since the ratio of ethanol produced to fossil fuel used is positive, ethanol should be further developed. If replacing oil is our goal, we must look at two parameters of this approach: (i) energy return on investment (EROI) including environmental impacts on soil, water, climate change, ecosystem services, etc.; and (ii) scalability and timing. Farrell and colleagues’ most optimistic EROI of 1.2:1 (which does not include tractors, labor, or environmental impacts) implies that we need to produce 6 MJ of ethanol to net 1 MJ of energy for other endeavors. Thus, the yield of ethanol would not be 360 gallons per acre gross yield, but rather a mere 60 gallons per acre net yield, not even two fill-ups for an SUV. The entire state of Iowa, if planted in corn, would yield approximately five days of gasoline alternative.

To devote half the nation’s corn crop to ethanol would require an input of 3.42 billion barrels of oil (almost half our current national use) to net 684 million barrels of “new” ethanol energy. We would also lose food and soil nutrients, suffer ecosystem damage, and use massive amounts of water for irrigation.

We need alternative energy. But ethanol from corn is neither scalable nor sustainable. Let’s pursue better options.

NATHAN HAGENS, ROBERT COSTANZA, KENNETH MulDER
Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.

IN THEIR REPORT “ETHANOL CAN CONTRIBUTE TO ENERGY AND ENVIRONMENTAL GOALS” (27 JAN., P. 506), A. E. Farrell and colleagues offer hopeful opinions about corn-based ethanol. Their analysis suggests that, since the ratio of ethanol produced to fossil fuel used is positive, ethanol should be further developed. If replacing oil is our goal, we must look at two parameters of this approach: (i) energy return on investment (EROI) including environmental impacts on soil, water, climate change, ecosystem services, etc.; and (ii) scalability and timing. Farrell and colleagues’ most optimistic EROI of 1.2:1 (which does not include tractors, labor, or environmental impacts) implies that we need to produce 6 MJ of ethanol to net 1 MJ of energy for other endeavors. Thus, the yield of ethanol would not be 360 gallons per acre gross yield, but rather a mere 60 gallons per acre net yield, not even two fill-ups for an SUV. The entire state of Iowa, if planted in corn, would yield approximately five days of gasoline alternative.

To devote half the nation’s corn crop to ethanol would require an input of 3.42 billion barrels of oil (almost half our current national use) to net 684 million barrels of “new” ethanol energy. We would also lose food and soil nutrients, suffer ecosystem damage, and use massive amounts of water for irrigation.

We need alternative energy. But ethanol from corn is neither scalable nor sustainable. Let’s pursue better options.

NATHAN HAGENS, ROBERT COSTANZA, KENNETH MulDER
Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.