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Report Robert Costanza, Octavio Pérez-Maqueo, M. Luisa Martinez, Paul Sutton,
Sharolyn J. Anderson and Kenneth Mulder

The Value of Coastal Wetlands for Hurricane
Protection

Coastal wetlands reduce the damaging effects of hurri-
canes on coastal communities. A regression model using
34 major US hurricanes since 1980 with the natural log of
damage per unit gross domestic product in the hurricane
swath as the dependent variable and the natural logs of
wind speed and wetland area in the swath as the
independent variables was highly significant and ex-
plained 60% of the variation in relative damages. A loss of
1 ha of wetland in the model corresponded to an average
USD 33 000 (median ¼ USD 5000) increase in storm
damage from specific storms. Using this relationship, and
taking into account the annual probability of hits by
hurricanes of varying intensities, we mapped the annual
value of coastal wetlands by 1km 3 1km pixel and by
state. The annual value ranged from USD 250 to USD
51 000 ha�1 yr�1, with a mean of USD 8240 ha�1 yr�1

(median ¼ USD 3230 ha�1 yr�1) significantly larger than
previous estimates. Coastal wetlands in the US were
estimated to currently provide USD 23.2 billion yr�1 in
storm protection services. Coastal wetlands function as
valuable, selfmaintaining ‘‘horizontal levees’’ for storm
protection, and also provide a host of other ecosystem
services that vertical levees do not. Their restoration and
preservation is an extremely cost-effective strategy for
society.

INTRODUCTION

Globally, since 1900, 2652 windstorms (including tropical
storms, cyclones, hurricanes, tornadoes, typhoons, and winter
storms) have been considered disasters. Altogether, they have
caused 1.2 million human deaths and have cost USD 381 billion
in property damage (1). Of these, hurricanes, cyclones, and
tropical storms have resulted in USD 179 billion in property
damage (47% of the total from all windstorms) and the loss of
874 000 human lives (73% of the total from all windstorms). The
impact of cyclones and hurricanes over the last decades has
increased, owing to an increase in built infrastructure along the
coasts, an increased frequency of category 4 and 5 hurricanes
(2), and an upward trend in tropical cyclone destructive
potential (3). Coastal wetlands reduce the damaging effects of
hurricanes on coastal communities by absorbing storm energy
in ways that neither solid land nor open water can (4). The
mechanisms involved include decreasing the area of open water
(fetch) for wind to form waves, increasing drag on water motion
and hence the amplitude of a storm surge, reducing direct wind
effect on the water surface, and directly absorbing wave energy
(5, 6). Since marsh plants hold and accrete sediments (7), often
reduce sediment resuspension (8), and consequently maintain
shallow water depths, the presence of vegetation contributes in
two ways: first by actually decreasing surges and waves, and
also by maintaining the shallow depths that have the same
effect. While few experimental studies or modelling efforts have
specifically addressed the effect of coastal marshes on storm
surges, anecdotal data accumulated after Hurricane Andrew in

1992 in Louisiana suggested that storm surge was reduced about
4.7 cm km�1 of marsh (3 inches mile�1 of marsh) (9).

Coastal wetlands may also protect coastal communities from
other types of damages. For example, there is evidence that
decreasing mangrove area in Thailand has led to larger damages
from all coastal natural disasters, including wind storms, floods,
and tsunamis (10). There is also evidence that property damage
and loss of human lives from the 2004 tsunami that hit
Southeast Asia was ameliorated by coastal ecosystems (11).
While this relationship has been questioned for tsunamis, which
are able to devastate even tall coastal forests (12), the evidence
for the role of coastal wetlands for protection from damages
due to hurricanes is more compelling.

METHODS

We estimated the value of coastal wetlands for hurricane
protection in the US using two basic steps. In step 1 we used a
multiple regression analysis using data on 34 hurricanes that
have hit the US since 1980 with relative damages as the
dependent variable and wind speed and wetland area as the
independent variables. In step 2 we used a version of the
relationship derived in step 1, combined with data on annual
hurricane frequency to derive estimates of the annual value of
wetlands for storm protection. This analysis allows us to
estimate how this value varies with location, area of remaining
wetlands, proximity to built infrastructure, and storm proba-
bility. These two steps are briefly described in turn below. Some
of the more technical details are explained in the notes at the
end of the paper in order to improve readability.

In step 1 we assembled available data on the major
hurricanes (those considered ‘‘disasters’’) that have hit the
Atlantic and Gulf coasts of the US since 1980 and for which
data on total damages were available (34 of the total of 267
storms) (1). We originally intended to perform a global analysis,
but after looking at the available global land use data and doing
some preliminary analysis, we decided that its quality and
coverage of coastal areas, and in particular coastal wetlands,
was too poor to be usable. We were, however, able to find
suitable coastal land use data for the US (with some caveats—
see below) so we limited our study to the US.

We combined data on the tracks of the US hurricanes and
their wind speeds with data on storm damages and spatially
explicit data on gross domestic product (GDP) and coastal
wetland area in each storm’s swath (Fig. 1). The following
datasets were assembled for the analysis: i) tracks of all
hurricanes striking the US from 1980 to 2004, which included
wind speed (13). Of these, only 34 hurricanes had sufficient
information on damages to include in the regression analysis.
All of the storms were used to estimate the strike frequencies,
since this did not require damage information. ii) Nighttime
light imagery of the US (14). A 1 km resolution GDP map was
prepared by using a linear allocation of the national GDP to the
light intensity values of the nighttime image composite (15).
This technique has been shown to be very accurate in allocating
GDP spatially, and correlates well with state totals derived
independently. While not perfect, GDP is a good proxy for
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economic activity and built infrastructure, and it is the only
measure we could derive at the high spatial resolution needed
for this study. GDP was adjusted to the year of each hurricane
using data on national GDP by year (16). iii) The 30 m
resolution National Landcover dataset, which included map-
ping of both herbaceous and forested wetlands (17). In our
analysis, we ended up using only the area of coastal herbaceous
wetlands (marshes), since the area of forested wetlands and
other land use types were found not to correlate with relative
damages (see Results below). Wetland area for Louisiana was
adjusted for years other than the year 2000 (the year of the land
use data) to take into account the recent extremely high rate of
coastal wetland loss of 65 km2 yr�1 (6). We made this adjust-
ment because Louisiana was the only area to have lost
significant coastal wetlands over the period of analysis and we
suspected that this rate of loss would significantly affect storm
protection characteristics. iv) Total damage information for 34
hurricanes considered to be ‘‘disasters’’ from the Emergency
Events Database (1). The damage included both direct (e.g.,
damage to infrastructure, crops, and housing) and indirect (e.g.,
loss of revenues, unemployment, and market destabilization)
consequences on the local economy. We adjusted the damage
data for inflation to convert them to 2004 USD based on the
US Department of Commerce implicit Price Deflator for
Construction (http://www.bea.gov).

100 km wide 3 100 km inland hurricane swaths were then
overlaid on the spatially explicit GDP and wetland cover
(herbaceous and forested wetlands were measured separately) to
obtain GDP and wetland area in each swath (Fig. 1). The 100
km3 100 km swath was used as an approximate average spatial
extent in order to standardize the calculations, and since we did
not have explicit data on the size of the swath of each storm.
This width of the swath was derived from visual observations of
storm extents based on cloud cover. It would be difficult to
explicitly map the extent of the storm’s influence without
knowing the complete wind and storm surge fields, which were
not available for all the storms. We also varied this assumption
and tried 60 km and 140 km wide swaths, but these did not
improve the results. The 100 km distance inland is a bit more
arbitrary, as is any definition of the ‘‘coastal zone,’’ but this

distance seemed to include the major elements of interest for our
study and was consistent with the width of the hurricane swath
we were using.

The GDP calculated within each hurricane swath and the
reported total economic damage (TD) were used to generate a
ratio (TD/GDP) which was used to represent the relative
economic damage caused by each hurricane (18).

We completed step 1 of the analysis by deriving from the
regression equation the total expected damages and avoided
damages per hectare of wetlands from storms of a given wind
speed, GDP in swath, and wetland area in swath. For step 2 of
the analysis, we assembled data on storm frequency by state and
by pixel from historical storm tracks. This was necessary in order
to derive a proxy for the annual probability of being struck by
hurricanes in specific storm categories, and these probabilities
were needed to derive annual (as opposed to by storm) total
damage and avoided damage estimates by state and by pixel.

RESULTS

For step 1, using ordinary least squares (OLS) we fit nine
alternative multiple regression models using the natural logs of
wind speed and area of coastal herbaceous and forested
wetlands as the independent variables and TD/GDP as the
dependent variable (19).

The final model we used was

lnðTDi=GDPiÞ ¼ aþ b1lnðgiÞ þ b2lnðwiÞ þ ui Eq: 1

where TDi ¼ total damages from storm i (in constant 2004
USD); GDPi¼ gross domestic product in the swath of storm i
(in constant 2004 USD; the swath was considered to be 100 km
wide by 100 km inland); gi¼maximum wind speed of storm i (in
m sec�1); wi ¼ area of herbaceous wetlands in the storm swath
(in ha); and ui ¼ error.

This model had an adjusted R2 of 0.604 and was highly
significant. The best fit coefficients for the model are shown in
Table 1 (21, 22, 24). The data used in the model are included in
Table 2.

As expected, increasing wind speed increased relative
damages (TD/GDP), while increasing herbaceous wetland area
decreased them. Figure 2 shows the observed vs. predicted

Figure 1. Typical hurricane swath
showing GDP and wetland area
used in the analysis.
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relative damages from the model, with each of the hurricanes
identified.

It was unexpected that forested wetlands did not improve the
model. Part of the explanation for this is that our land use
database did not distinguish between coastal forested wetlands
(i.e., mangroves) and inland riparian forested wetlands. We
would expect mangroves to have a significant storm protection
effect, relative to inland riparian forest. Since mangroves occur
in the US to a significant extent only in southern Florida, their
positive effect was no doubt out-weighted by the lack of effect
of riparian forested wetlands elsewhere. In future studies we
hope to obtain better data that can differentiate mangroves
from riparian forested wetlands.

We can rearrange equation (1) to estimate the total damages
from hurricane i as:

TDi ¼ ea 3 gb1

i 3 wb2

i 3 GDPi Eq: 2

One can clearly see from this form of the relationship the

relative influence of GDP, wind speed and wetland area on total

damages. Total damages vary linearly with GDP, as one might

expect since the more infrastructure there is to be damaged the

more damage one can expect. TD also varies as the b1 power of
wind speed. The value of b1 from Table 1 indicates that total

damages increase as the 3.878 power of wind speed, fairly

consistent with the well-known relationship that the power in

wind varies as the cube of speed. The value of b2 in Table 1 of

�0.77 indicates that total damages decrease quite rapidly with

increasing wetland area.

The difference in TDi with a loss of an area a of wetlands

(i.e., the ‘‘avoided damage’’ per unit area of wetland) is then:

DTDi ¼MVi ¼ ea 3 gb1

i 3 ðwi � aÞb2 � wb2

i

h i
3 GDPi Eq: 3

Table 1. Regression model coefficients including lower and upper 95% confidence intervals.

Parameter Coefficient Lower 95% CI Upper 95% CI Standard Error t P

a –10.511 –20.06 –3.36 3.29 –3.195 0.003
b1 3.878 2.45 5.34 0.706 5.491 ,0.001
b2 –0.77 –1.06 –0.247 0.16 –4.809 ,0.001

Table 2. Maximum wind speed, herbaceous wetland area, gross domestic product (GDP), total damage and calculated marginal value (MV) (per
ha of wetland) for storm protection for each hurricane used in the regression analysis. Lower and upper 95% confidence intervals on the
marginal values are also shown.

Hurricane Year States hit

Max wind
speed

(m sec�1)

Herbaceous
wetland
area in

swath (ha)

GDP in
swath

hit year
(2004 USD
millions)

Observed
total

damage
(2004 USD
millions)

Estimated
MV ha�1

(2004
USD ha�1)

MV lower
95% CI
(2004

USD ha�1)

MV upper
95% CI

(2004 USD
ha�1)

Alberto 1994 GA, MI, FL, AL 28.3 4466 5040 305 15 607 1254 59 663
Alicia 1983 TX 51.4 93 590 100 199 2823 14 449 5316 22 146
Allen 1980 TX 84.9 26 062 13 151 1674 127 090 29 204 283 261
Allison 1989 TX, LA, FL, NC, PA, VA 23.1 167 494 149 433 63 348 85 938
Allison 2001 TX, LA, FL, NC, PA, VA 25.7 100 298 185 610 6995 1611 377 4042
Andrew 1992 FL, LA 69.4 901 819 83 450 34 955 699 318 1247
Bill 2003 LA, MS, AL, FL 25.7 642 544 70 669 17 23 8 54
Bob 1991 NC, ME, NY, RI, CT, MA 51.4 68 465 122 358 829 30 683 9982 48 743
Bonnie 1998 NC, SC, VA 51.4 49 774 15 840 373 6984 2008 11 585
Bret 1999 TX 61.7 29 695 2043 35 4557 1119 8368
Chantal 1989 TX 36.0 104 968 81 319 111 2400 763 4351
Charley 1998 TX 25.7 55 126 18 775 33 470 90 1254
Charley 2004 FL 64.3 358 778 483 281 6800 15 347 7918 24 062
Danny 1997 OH, PA, IL, NY, NJ 36.0 271 317 66 711 111 367 158 622
Dennis 1999 NC 46.3 22 752 17 669 45 20 704 4199 40 396
Elena 1985 FL, AR, KY, SD, IO, MI, IN, MO 56.6 50 568 14 240 1774 8835 2629 14 698
Emily 1993 NC 51.4 615 6 38 5795 272 24 748
Erin 1995 FL, AL, MS 41.2 264 226 132 138 821 1278 610 1967
Floyd 1999 NC, FL, SC, VA, MD, PA, NJ,

NY, DE, RI, CT, MA, VT
69.4 188 637 420 940 7259 56 214 26 075 93 566

Fran 1996 NC, SC, VA, MD, VA, PA, OH,
Washington DC

54.0 9 033 10 471 3900 114 389 16 760 259 346

Frances 2004 FL, NC, SC, OH 64.3 340 051 150 986 4400 5272 2710 8270
Gaston 2004 VA, SC, NC 30.9 100 502 82 063 62 1439 402 2999
Gloria 1985 NC, NY, CT, NH, ME 64.3 87 863 188 531 1451 72 229 27 350 119 390
Hugo 1989 SC 72.0 32 906 13 684 1391 46 288 11 868 89 485
Irene 1999 FL 46.3 692 219 114 903 104 319 179 488
Isabel 2003 NC, MD, VA, Washington DC 72.0 37 942 35 068 5406 92 176 24 987 175 244
Isidore 2002 LA, MS, AL, TN 56.6 574 157 64 990 79 547 296 830
Ivan 2004 AL, LA, MS, FL, PA, MD, NJ,

OH, NC, VA, GA, TN
74.6 504 033 226 150 6000 6996 3204 12 550

Jeanne 2004 FL 56.6 404 769 133 657 7000 2088 1148 3096
Jerry 1989 TX 38.6 98 540 86 173 49 3717 1209 6450
Katrina 2005 AL, LA, MS, GA, FL 78.2 708 519 214 277 22 321 4363 1847 8429
Keith 1988 FL 33.4 222 324 55 856 44 328 126 594
Lili 2002 LA 64.3 224 504 24 439 295 1779 881 2798
Opal 1995 FL, GA, AL 66.9 7261 12 652 3521 465 730 64 749 1 111 043

Mean 52 218 995 99 905 3561 33 268 7356 71 962
Median 53 100 400 75 994 825 4914 1231 8398
S.D. 17 243 111 110 816 7001 83 466 13 403 196 765

Ambio Vol. 37, No. 4, June 2008 243� Royal Swedish Academy of Sciences 2008
http://www.ambio.kva.se



If a is small relative to w, this represents the estimated
‘‘marginal value’’ (MV) per unit area of coastal wetlands in
preventing storm damage from a specific hurricane. Table 2 lists
MVi for each of the 34 hurricanes in the database for unit areas
of 1 ha. The values range from a minimum of USD 23 ha�1 for
Hurricane Bill to a maximum of USD 465 730 ha�1 for
Hurricane Opal, with an average value of just over USD 33
000 ha�1. The median value was just under USD 5000 ha�1,
indicating a quite skewed distribution, mirroring the skewed
distribution of damages. For each hurricane, we also calculated
an upper and lower bound on the marginal value estimate by
applying the formula for marginal value to each combination of
regression parameters and taking the 95th percentiles (as
reported in Table 1).

Equation 3 allows one to estimate the avoided damages from
any area of wetlands (a) up to the total area of wetlands in the
swath. For example, one might be interested in the ‘‘average’’
value of a larger area of wetlands, say half the wetlands in the
swath. This could be estimated by using a¼½ of the total area
of wetlands in the swath in Eq. 3 and then dividing the result by
½ the total area of wetlands in the swath. The average values
per hectare calculated in this way (using 50% of the wetland
area) are consistently 1.8 times higher than the marginal values.

For step 2, we then estimated the annual value of coastal
wetlands for storm protection. This required an estimate of the
annual probability of being hit by hurricanes of various
intensities. We used data on historical frequencies by state as
proxies for these probabilities. Data for each of the 19 states in
the US that have been hit by a hurricane since 1980 (267 total
hits) were used to calculate the historical frequency of hurricane
strikes by storm category (26). We calculated the average GDP
and wetland area in an average (100 km 3 100 km) swath
through each state using our Geographic Information System
database. We then calculated the annual expected marginal
value (MV) for an average hurricane swath in each state using
the following variation of Eq. 3:

MVsw ¼
X5

c¼1

pc;s 3 ea 3 gb1
c 3 ðwsw � 1Þb2 � wb2

sw

h i
3 GDPsw

Eq: 4

where s¼ state; sw¼ average swath in state s; gc¼ average wind
speed of hurricane of category c; pc,s ¼ the probability of a
hurricane of category c striking state s in a given year; GDPsw¼
the GDP in state s in the average hurricane swath; wsw ¼ the

wetland area in state s in the average hurricane swath. We then
estimated total annual value of wetlands for storm protection as
the integral of the marginal values over all wetland areas (i.e.,
the ‘‘consumer surplus’’) (27). We can then estimate the average
annual value per wetland hectare per state as

AVs ¼ TVs=ws Eq: 5

The estimated annual marginal value in an average swath
(MVsw), the total value (TVs) for all the state’s wetlands, and
the average annual value per hectare (AVs) of coastal wetlands
for each state estimated in this way are shown in Table 3.

Using this technique, the mean annual marginal value per
hectare in a typical swath across states (MVsw) was almost USD
40 000 ha�1 yr�1, with a range from USD 126 ha�1 yr�1 (for
Louisiana) to USD 586 845 ha�1 yr�1 (for New York) and a
median value of USD 1700, indicating a quite skewed
distribution. MV varied inversely with wetland area (Fig. 3A),
indicating that the per hectare value of wetlands increases as
they become more scarce. The expected mean of the total
annual values by state (TVs) integrating over all the state’s
wetlands, for the 19 states (assuming a lower bound cut-off for
the integration of k¼ 5000 ha) was USD 1.2 billion yr�1, with a
median of USD 140 million yr�1, again reflecting a skewed

Figure 2. Observed vs. predicted
relative damages (TD/GDP) for
each of the hurricanes used in
the analysis.

Hurricane Katrina approaching the coast of Louisiana in August,
2005.
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distribution across states (see note 24 for an explanation of k,
table 3 also lists totals for other values of k). The total annual
value summed over all states was USD 23.2 billion yr�1 (at k¼
5000). TVs generally increased with total area of wetlands in the
state (Fig. 3B). Differences by state in both Figures 3A and 3B
reflect the relative amounts of coastal infrastructure vulnerable
to damage and relative storm probabilities. For example,
Louisiana has the most wetlands, but less vulnerable infrastruc-
ture than Florida and Texas, while New York, Massachusetts,
and Connecticut had fewer wetlands but more vulnerable
infrastructure. The mean AVs by state was a little over USD
8000 ha�1 yr�1, with a range from around USD 250 ha�1yr�1

(for Delaware) to just over USD 51 000 ha�1 yr�1 (for New
York) and a median value of just over USD 3200 ha�1 yr�1.

Our final analysis in step 2 involved using spatially explicit
data on historical storm tracks to estimate probabilities of being
hit by storms of a particular category for each pixel along the
coast. For this analysis we had data on fewer storms (a total of
52), resulting in frequencies that did not match the state level
frequencies exactly, and were distributed across the states. The
advantage is that it allowed us to map wetland storm protection
values at much higher spatial resolution. For this application, a
circle with radius 50 km was drawn around each 1 km 3 1 km
pixel within 100 km of the coast, the wetland area and GDP in
the circle was measured, and Eq. 5 was applied, with the result
for each pixel multiplied by the area of wetland in the pixel
divided by the area of wetland in the 50 km radius circle. Figure
4 maps the total value per 1 km 3 1 km pixel estimated in this

Table 3. Coastal wetland area in each state, mean wetland area and gross domestic product (GDP) in the average 100 km swath, estimated
annual storm probabilities by category, and calculated marginal value per average swath (MVsw), total value for the state (TVs) under 3
assumptions for the lower area cut-off value for the integration (27) and average annual value per ha (AVs).

State

Wetlands
within

100 km of
coast by

state Ws (ha)

Wetland
area in
average
swath

Wsw (ha)

GDP in
average

swath (USD
millions y�1)

Probability of state being hit by a storm of
the given category in a year by storm category

1 2 3 4 5

Alabama 16 759 6388 9499 7.14% 3.25% 3.90% 0.00% 0.00%
Connecticut 21 591 12 601 65 673 2.60% 1.95% 1.95% 0.00% 0.00%
Delaware 33 964 12 089 10 488 1.30% 0.00% 0.00% 0.00% 0.00%
Florida 1 433 286 186 346 70 491 27.92% 20.78% 17.53% 3.90% 1.30%
Georgia 140 556 29 120 7356 7.79% 3.25% 1.30% 0.65% 0.00%
Louisiana 1 648 611 370 299 36 250 11.04% 9.09% 8.44% 2.60% 0.65%
Maine 60 388 15 500 14 670 3.25% 0.65% 0.00% 0.00% 0.00%
Maryland 60 511 16 011 21 924 0.65% 0.65% 0.00% 0.00% 0.00%
Massachusetts 49 352 16 801 67 266 3.25% 1.30% 1.95% 0.00% 0.00%
Mississippi 25 456 6048 3890 1.30% 3.25% 4.55% 0.00% 0.65%
New Hampshire 19 375 9905 23 051 0.65% 0.65% 0.00% 0.00% 0.00%
New Jersey 69 001 21 864 78 703 1.30% 0.00% 0.00% 0.00% 0.00%
New York 5306 2117 90 770 3.90% 0.65% 3.25% 0.00% 0.00%
North Carolina 64 862 21 295 13 023 13.64% 8.44% 7.14% 0.65% 0.00%
Pennsylvania 7446 2994 93 117 0.65% 0.00% 0.00% 0.00% 0.00%
Rhode Island 3638 1759 12 810 1.95% 1.30% 2.60% 0.00% 0.00%
South Carolina 107 894 39 177 15 367 12.34% 3.90% 2.60% 1.30% 0.00%
Texas 448 621 79 110 63 661 14.94% 11.04% 7.79% 4.55% 0.00%
Virginia 71 509 23 588 27 786 5.84% 1.30% 0.65% 0.00% 0.00%
Mean 225 691 45 948 38 200 6.39% 3.76% 3.35% 0.72% 0.14%
Median 60 388 16 011 23 051 3.25% 1.30% 1.95% 0.00% 0.00%
S.D. 475 157 89 175 31 083 7.01% 5.25% 4.39% 1.40% 0.35%

State

Annual expected
marginal value

per average
swath MVsw

(USD ha�1 yr�1)

Total annual value per state (TVs) for
k ¼ 10 000, 5000, and 1000 (USD millions y�1)

Average
annual value
of wetlands
per ha per
state (AVs)
at k ¼ 5000

(USD ha�1 yr�1)k ¼ 10 000 k ¼ 5000 k ¼ 1000

Alabama 14 155 40.9 133.6 749.5 7970.4
Connecticut 14 428 263.2 615.4 2705.2 28 503.5
Delaware 222 3.7 8.7 38.6 255.8
Florida 1684 6453.9 11 293.6 40 010.3 7879.5
Georgia 630 72.3 140.0 542.2 996.2
Louisiana 126 1665.7 2883.2 10 107.2 1748.8
Maine 715 21.3 46.5 196.0 770.1
Maryland 445 14.3 30.9 129.4 510.4
Massachusetts 8422 301.2 643.3 2673.1 13 035.3
Mississippi 7154 17.8 59.0 341.5 2316.1
New Hampshire 1095 10.7 28.1 131.7 1451.2
New Jersey 583 37.0 74.8 298.9 1083.5
New York 586 845 79.5 271.2 3473.3 51 106.9
North Carolina 5072 304.1 617.5 2477.0 9519.6
Pennsylvania 11 651 4.1 14.1 141.3 1890.4
Rhode Island 95 193 7.7 26.3 377.0 7239.1
South Carolina 1281 265.0 498.0 1880.0 4615.3
Texas 3901 3087.1 5547.2 20 144.4 12 365.0
Virginia 1555 115.6 230.8 914.1 3227.6
Mean 39 745 671.8 1219.1 4596.4 8236.0
Median 1684 72.3 140.0 749.5 3227.6
S.D. 134 195 1594.0 2788.8 9848.0 12 418.4

Totals 12 765.0 23 162.0 87 330.7
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way. Finally, we summed over all pixels in each state to yield

estimates comparable with the ‘‘state level’’ analysis discussed

earlier. The state totals aggregated from the ‘‘pixel level’’

analysis had an adjusted R2 of 0.88 compared with the state

totals from the ‘‘state level’’ analysis. Figure 4 shows wetlands

of particularly high storm protection value density at the

intersection of high storm probability, high coastal GDP, and

high wetland area. For example, Southeast Florida, coastal

Louisiana, and parts of Texas all show high values. Connect-

icut, Massachusetts, and Rhode Island also show fairly high

values, due largely to the very high levels of coastal GDP in
those states.

DISCUSSION

There have been many previous estimates of the value of coastal
wetlands (10, 28–30) but estimates of the value for hurricane
protection have been few. Barbier (10) recently estimated the
value of mangroves in Thailand for protection against coastal
natural disasters (including tsunamis, wind storms, and floods)
using a similar avoided damages approach (what he calls the

Figure 4. Map of total value of coastal wetlands for storm protection by 1 km 3 1 km pixel.

Figure 3. Area of coastal wetlands in the average hurricane swath vs. the estimated marginal value per ha (MVSW) (A) and in the entire state
(B) vs. the total value (TVS) of coastal wetlands for storm protection.
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Expected Damage Function, or EDF approach). The data for
his application were much less spatially explicit than that used
in the current study, and the form of the equation and the
statistics involved were somewhat different because of the
nature of the data. He derived a value of USD 5850 ha�1 for
mangroves.

Farber (31) and Costanza et al. (28) used a method similar to
(but less spatially explicit) than the one used in this study to
estimate the value of coastal wetlands for hurricane protection.
They dealt only with hurricanes striking Louisiana and
estimated an annual average value of hurricane protection
services of about USD 1000 ha�1 yr�1 (converted into 2004
USD). Our current analysis included a much larger database of
more recent hurricanes covering the entire US Atlantic and Gulf
coasts and was able to utilize much more spatially explicit data
on hurricane tracks, wetland area, and GDP. Our correspond-
ing estimated value for Louisiana was about USD 1700 ha�1

yr�1, somewhat larger than the previous estimate, but still fairly
consistent. Our current study allows one to assess not only the
value of wetlands for storm protection, but how that value
varies with location, area of remaining wetlands, proximity to
built infrastructure, and storm probability, thus providing a
richer and more useful analysis of this important ecosystem
service. It also allows us to state the ranges of values that would
result from varying parameter assumptions and the confidence
intervals on the estimates.

The results also allow straightforward assessments of the
impacts of changes to wetlands. For example, Louisiana lost an
estimated 480 000 ha of coastal wetlands prior to Katrina (2005)
and 20 000 ha during hurricane Katrina itself (6). The value of
the lost storm protection services from these wetlands can be
estimated as the average value per hectare in Louisiana (USD
1700 ha�1 yr�1 from Table 3) times the area, yielding
approximately USD 816 million yr�1 for services lost from
wetlands lost prior to Katrina and an additional USD 34
million yr�1 for wetlands lost during the storm. Converting this
total of USD 850 million yr�1 to present value terms using a 3%
discount rate implies a lost value for just the storm protection
service of this natural capital asset of USD 28.3 billion, and the
lost storm protection value due to wetlands lost during Katrina
of USD 1.1 billion.

If the frequency and intensity of hurricanes increases in the
future, as some are predicting as a result of climate change, then
the value of coastal wetlands for protection from these storms
will also increase. Coastal wetlands provide ‘‘horizontal levees’’
that are maintained by nature and are far more cost-effective
than constructed levees. The experience of hurricane Katrina
provided a tragic example of the costs of allowing these natural
capital assets to degrade. Coastal wetlands also provide a host
of other valuable ecosystem services that constructed levees do
not. They have been estimated to provide about USD 11 700
ha�1 yr�1 (in 2004 USD) in other ecosystem services (excluding
storm protection) (32), and experience (including the current
study) has shown that as we learn more about the functioning of
ecological systems and their connections to human welfare,
estimates of their value tend to increase. Investing in the
maintenance and restoration of coastal wetlands is proving to
be an extremely cost-effective strategy for society.
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