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ABSTRACT

Costanza, R. and Sklar, F.H., 1985. Articulation, accuracy and effectiveness of mathematical
models: a review of freshwater wetland applications. Ecol. Modelling, 27: 45-68.

Eighty-seven mathematical models of freshwater wetlands and shallow water bodies were
classified by wetland type, location, and degree of nonlinearity, and rated by three new
indices: articulation; accuracy; and effectiveness. Articulation measures the size and complex-
ity of the model in the three modes of components, space, and time. Accuracy combines
measures of goodness-of-fit in each mode. Effectiveness measures explanatory power as a
combination of articulation and accuracy. For the models reviewed accuracy was seen to fall
with increasing articulation, probably as a result of increasing complexity and cost. Effective-
ness, however, rose to a maximum at intermediate articulation and then fell, reflecting the
fact that highly accurate models tended to be low in articulation (they said much about little),
while highly articulate models tended to be low in accuracy (they said little about much).
These methods for ranking models may prove useful for further analysis and the results of
this analysis may provide a useful guide to model builders concerned with maximizing the
effectiveness of their models using limited resources.

INTRODUCTION

Mathematical models are essential tools for understanding and managing
ecosystems. There are a large number of models in the international litera-
ture on freshwater wetlands alone, and the list for general ecosystems models
is enormous.
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One of the most fundamental questions facing scientists is: how does one
evaluate alternative explanations (models), given that an essentially infinite
number of models are possible and no one model can ever achieve perfec-
tion? In this paper we (a) develop several methods for classifying models and
several scales for ranking models; (b) apply them to mathematical models of
freshwater wetlands; and (c) interpret the results.

The task can be thought of as a systematic literature review. To access,
evaluate, and use modeling information, periodic literature reviews are
necessary. An effective review must be more than a list, however. It must
organize and summarize the information in a convenient and useful way. In
this review we summarize the models by:

(1) wetland type;

(2) geographical area;

(3) degree of nonlinearity;

(4) a measure of model complexity we call the ‘degree of articulation’ in
terms of components, space, and time;

(5) where possible, indices of ‘descriptive accuracy’ and ‘effectiveness’.

The review is limited to models that use some kind of formal mathemati-
cal description, either explicit equations or system diagrams with implied
equations. The review is also limited to freshwater wetlands and shallow
bodies of water. Shallow is taken to mean a maximum depth of 3 m or less.
Rivers and other flowing water systems are also excluded.

While this review is not exhaustive, even of this limited subset of ecosys-
tems, it covers 87 published works that span the modeling spectrum. Our
organizational scheme provides a compact and accessible guide to this
literature, and a method for classifying the models in terms that are useful
for further analysis. First we briefly discuss some theoretical and philisophi-
cal points.

Mathematical tools

The mathematical tools available for ecological modeling can be classified
in several ways, but the most frequently used classification is into linear and
nonlinear categories. This distinction is important since linear systems theory
is a well-developed branch of mathematics, while there is no corresponding
body of theory on nonlinear systems (cf. Patten, 1976).

With the development of inexpensive high speed computing, nonlinear
systems began to receive more attention. Computer algorithms are the tools
associated with nonlinear systems instead of the more traditional theorems
and proofs associated with linear theory. For example, the diagrammatic
languages developed by Odum (1971) and Forrester (1961) are tools for
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developing computer programs to simulate nonlinear differential equation
systems on computers. Even with readily available computers, however,
nonlinear systems of equations are usually more difficult to manipulate than
linear systems, and the more nonlinear a system of equations is, the more
troublesome and difficult it usually is. This extra ‘cost’ must be compensated
for by some ‘benefits’ in terms of a better description of the system. For this
reason we looked at the ‘degree of nonlinearity’ of the models (measured as
the percentage of nonlinear terms in the model equations) as one index of
their mathematical difficulty.

Modes of articulation

To ‘articulate’ in language is to ‘divide into syllables or words meaning-
fully arranged’. The term articulation is a useful concept for the discussion
of ecosystem models since models are simplifications or divisions of the
continuum that is nature. The simplification or ‘dividing into words’ can be
accomplished in three modes: components; space; and time. Ecosystem
models can be classified according to their degree of articulation in these.

Dynamic models are those articulated in time: spatial models are articu-
lated in space; and compartment models are articulated in the system
components (state variables). Of course, models may be articulated in all
three modes at once. The more articulated a model is, the more expensive it
is to build and run. Since no practical model can be maximially articulated
in all three modes simultaneously, there are trade-offs among the modes. The
optimal solution is determined by the relative importance of articulation in
each mode to specific questions the model is designed to address.

Descriptive accuracy

The terms descriptive and predictive recur in the modeling literature. In
general, descriptive refers to models that describe an existing structure or
known behavior of a system. Predictive refers to models that are used to
extrapolate the structure or behavior of a system outside the existing data
boundaries. Most mathematical models combine both functions, since pre-
diction is usually accomplished by mathematically manipulating the descrip-
tive model. Another way of thinking of the relationship is that descriptive
models are the mathematical tools available to model builders for interpola-
tion, while prediction requires extrapolation beyond the existing data.

One reason for the abundance and diversity of both descriptive and
predictive models of ecosystems is that no single model can claim a high
degree of accuracy over a broad range of ecosystem structure or behavior.
This is to be expected, because ecosystems are complex phenomena. The
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range of ecosystem structure and behavior cannot be totally captured in a
single, cost-effective model. It is more useful to maintain a family of
descriptive models (mathematical tools) and the predictions based on them
(model uses), since each model has its own areas of accuracy and applicabil-
ity.

The degree of accuracy with which a particular model can describe the
historical structure or behavior of an ecosystem is measurable in a number of
ways (Jprgensen 1982). Statistical indices of ‘goodness-of-fit’ (like R-squared)
are useful in this regard. Frequently, however, the data necessary to calculate
these statistical indices are not available, and other less formal methods must
be used.

Although predictive accuracy is the goal of most models, descriptive
accuracy is all one can measure before the fact. Descriptive accuracy is
usually taken as at least a necessary (though not a sufficient) condition for
predictive accuracy. As such, it is a useful concept for classifying model
performance.

METHODS

We supplemented our existing knowledge of the wetland modeling litera-
ture with a systematic computer literature search and use of previous SCOPE
wetland modeling reviews (i.e. Mitsch et al., 1982). While we cannot claim to
have found via this method every reference that exists on freshwater wetland
models, we do think that we achieved a relatively thorough review. Using
this review, we compiled a bibliography and additional data for each
reference. Wetland type (Table I), geographical location, and degree of
nonlinearity were cataloged for each model (see Table II). In addition,
indices of articulation, descriptive accuracy, and effectiveness, as described
below, were computed for those models with sufficient information.

TABLE I

Wetland types used in this study

Number Wetland type ?

(49 Forested swamp

2 Bottomland hardwood forest
3) Emergent marsh

4 Floating marsh

5 Shallow ponds and lakes (3 m or less)
6) Bogs and fens

@) Tundra

®) Combinations of the above

2 After Mitsch et al. (1982).
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Articulation indices

To compare the degree of articulation of the models, we constructed
indices for the three major modes of articulation: components, space, and
time. The index for each mode, we thought, should have a ‘diminishing
return’ form, to reflect the fact that initial articulation effort is more
productive than later effort, and that infinite effort asymptotically ap-
proaches a maximum articulation. We calculated the index for both the
model and the data in all cases, since it is possible to construct a very
articulate model with very inarticulate (or even nonexistent) data.

We used the following equation for the articulation index since it is a
popular and simple form that exhibits the desired diminishing return behav-
ior (although other equation forms that also exhibit diminishing returns
would probably work just as well):

{
Ai_ki+(]vi_1)><100 (1)
where A, = articulation index for mode i; N, = number of divisions in mode
i; k= scaling factor for mode i.

The number of divisions in each mode are: the number of components or
state variables for the component mode (N,), the number of time steps for
the time mode (N,), and the number of spatial units (i.e., pixels) for the
space mode (N,). The scaling factor was chosen to reflect the relative degree
of difficulty of increasing the number of divisions in the mode, and an idea
of the maximum size of the most articulated existing models in each mode.
The scaling factors chosen for components, time, and space, respectively,
were:

k, =50
k, = 1000
k, = 5000

These parameter values indicate that adding a component (state variable)
to a model is much more difficult than adding a time step, which is in turn
more difficult than adding a pixel of spatial resolution. For example, a
model with 50 state variables, 1000 time steps, and 5000 spatial units would
have an articulation index of 50 for each mode, and 50 average. The same
average articulation could be achieved by a model with 200 state variables,
2340 time steps, and 1 spatial unit.

The distinction between the articulation index of the model and data is
critical. It is relatively easy to run a simulation model with 10000 time steps
(or infinite time steps on an analog computer) but it is very difficult to
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collect supportive data at this frequency. In many cases, the articulation of
the data is the limiting factor.

Descriptive accuracy

An index of descriptive accuracy was calculated as the percentage of the
total (historical) variation that was explainable by the model, averaged over
all three modes and stated as a fraction between 0 and 1. The average value
was used to standardize the index across all three modes of articulation and
to estimate model accuracy as a percentage of the total maximum accuracy
possible.

Our ability to calculate this index varies from study to study. In many
cases the necessary information was not available. In most of the remaining
cases, only a rough estimate of the descriptive accuracy of the model was
possible. In only a few cases there was either enough information to precisely
calculate the index or it has already been calculated and reported. We noted
which of these three situations applied for each model.

Two situations arose frequently: (a) curves showing the model’s behavior
in time would be given, with the associated data points; or (b) the steady-state
values for the model components would be given with average values for the
real system. In the first case we estimated the descriptive accuracy of the
model by using a small digitizer connected to a microcomputer to replicate
the model and data time series. We then calculated the coefficient of
determination (R?) for each component and took the average; the error
associated with this procedure was about 5-10% (based on the precision of
the digitizer). In the second case we simply calculated the percent deviation
between the model and the data as:

| model — data |

- 2
data 2)

and took the average over the components or spatial units.

Neither of these procedures gives very precise estimates, and this must be
remembered when interpreting the results.

1

Effectiveness

The best model is the one that explains the most. A model with a high
descriptive accuracy does not explain much if its accuracy is limited in
articulation, however. For example, a one component model may have high
descriptive accuracy for that one component, but say nothing about the rest
of the system. Similarly, a highly articulated model which does not fit the
data explains little.



51

To rank the models we developed an index of effectiveness or explanatory
power. This index was calculated as the coefficient of determination (if
‘calculatable) for each mode multiplied by the minimum of the data or model
articulation index for that mode, and then averaged over the three modes.
The most effective model under this scheme is one that balances the costs of
added articulation with the benefits of increased accuracy to do the best job
of explaining all the modes of the system.

RESULTS

Our review turned up 87 models in 59 different studies that were (a)
sufficiently documented and (b) within the limits of our review. There were
several additional models that were tangential to the topic, too general to
allow calculation of indices, redundant with models we had already reviewed,
or lacked readily available documentation. The reviewed models are a
representative, though not an exhaustive, sample.

Tables II-IV summarize the results of our review. Table II lists the
reviewed models, sorted according to wetland type (as given in Table I), and
lists the location, principal modeling unit, and the raw scores used for
calculating the articulation indices and other parameters for each model.
Many of the reviewed models had missing values for some of the data. These
are indicated by a dash (-) in Table II and in subsequent tables.

Table II indicates that the majority of the modeling effort has been
focused on shallow lakes (30 models), forested swamps (18 models), and
emergent marshes (14 models). Floating marshes (5 models), tundra (4
models) and bogs and fens (2 models) are noticeably underrepresented.
Except for some of the shallow lake models, the modeled systems are all in
the United States.

The principal modeling component (PMC) is listed for those models that
dealt with mainly one accounting unit that cycled through the internal
modeling components. For example, there were 13 hydrologic models (PMC
= water), 13 biomass models, 4 carbon models, 4 energy models, and 10
phosphorus models. There were several models that dealt in multiple units
and these were labled PMC = general.

Table II lists the number of components or state variables in the model
(MCA) and the data (DCA), the number of spatial units or pixels in the
model (MSA) and the data (DSA), and the number of time intervals in the
model (MTA) and the data (DTA) for each study. ‘Analog’ models or data
are given a value of 99999. Different types of models have characteristic
values for these variables, but these are more easily seen after the articulation
indices based on them are calculated.



0 0 0 0 000 97 1 1 66666 1 L L [eJ2UaDy v'sn 14 duremg usoin 0'SL6l BZUBISOD
0 0 0 0 000 &y € 001 €LT I 14 v By v'sn v1 urRynog 0’1861 ‘[ 13 PUBPRASD
0 0 1 I 880 8 s 66666 1 1 L L smoydsoyq VSN 14 " WSSy '6L61 1o0]Ae], pue suing
0 0 0 0 000 0 L 66666 1 Sel 1 1 em VSN BE| Y SPuuISSTy 0'6L61 Iojfe [, pue suing
0 0 0 0 000 ST 1 66666 1 I T 14 [edauay VSN 14 sape[31aag 0'9L61 wnpQ) pue AajAeq
ysapwi Juaiaug (g)
0 0 0 0 00 1220 § 00T 9SEYy  9sey ST Y4 SIALL VSN qv AR AYM v'6L61 sddiyg
0 0 0 0 00 122 § 00T 9SEy 9sevy ST ST S VSN qv I9ATy AMym £6L61 sddyq
0 0 0 0 00 & 1 00T 9sEYy  9%evy ST ST S22 L V'$Nn uv JoAry 2aym T6L61 sddiyq
0 0 0 0 00 [ 2 ! 007 9sey  9SEvy ST ST §991], VSN uv 19ATY AAMYM 1'6L61 sddyq
0 0 0 0 00 08 1 1 66666 1 1 93 [e12UD) VSN 14 duremg usoin 0'sL61 umolg pue wnpQ
- - - - - o 1 I 1 I 6 6  snioydsoyq VSN DN dwemg Surdsar) 70861 T8 19 33[ZUany
- - - - - 0 1 1 1 L L L uoqre?) AAYS! ON dwemg Suidsar) 10861 ‘I 13 Iazuany
0 0 0 0 00 0 L 1 €LT I 1 91 [eloudn) VSN \ 8! ure|d Srelaqg TE861 Te 19 BZUBISOD
0 0 1 1 €0 0T 1 007 66666 66666 €1 €1 S V'S HN 3ooigq pieqqnHy ozLel Te 12 upjiog
;ULQ.\ Vgthu—\ \:E}EQ:@N ANV
0 0 0 0 000 00 1 01 L L 4 [4 Jrem vV'Sn 11 wsyinog o'LLel Jjoqudty
0 0 0 0 000 OSL O 66666 0 I 0 L1 [eloudy v'Sn (9] [eJ2UaD 0'9L61 Te 1w uorreym
1 0 L L 0S50 TSt vT 89L v L 1 1 em vV's'n vl euejereq 0'¢861 Jepys
0 0 0 0 000 00 L I 1 1 8 8 RIem v'sn vO 3JOUIINO TERLL6L POIAY
0 0 0 0 000 00 I I 1 1 4 4 mem V'S vO 3OO T'qLL61 POIAY
0 0 0 0 000 00 1 1 I 1 14 14 1em V'S vO SMOUBNO 07861 SHeW pue uaned
1 0 I 1 9T0 005 ¥ 9T 001 1 1t I AW vV'sn ON dwemg [eusiq 0'6L61 Te 12 [eyosed
0 0 0 0 000 005 I 1 1 L Sl ST [eIPUD) VSN 11 uryInog 0'LL6L eme30
0 0 0 0 000 o0y O 1 I I 1 p1  snioydsouq VSN 14 oprem 0'8L61 [9ssaN
- - - - - LUy 9 6666 v I L 8 ssewotg VSN 14 swo( ssardA) 0'e861 YOS
0 0 0 0 000 00 - 66666 Tl I 4 [4 rem V'sn 14 Aeg sapdeN O'LL6L uygolory
0 0 0 0 000 oO01U 1 66666 1 T v v snoydsoyq VSN 14 1samyinog 0'8L61 7InyosIofg
0 0 0 0 000 o061 1 00001 T L ST S1  smoydsoyq VSN 14 Jasauresy 0'8L61 y3o(q pue [omy
0 0 0 0 000 00 1 I €LT I o1 011 [e12U20) A AN V1 uteld swe2q resel 'Ie 12 BZURISOD)
0 0 0 0 000 092 1 T 66666 1 L L [elauasy v'sn 14 dwemg uaain T°SL6T Bzug)son
0 0 0 0 000 8S1L vT 1 I I v 6 ssewrorqg vV'Sn Td ureydpoorq £8L61 umolgq
0 0 0 0 000 8SL ¥T 1 I 8 S o1 sseworg v'sn 14 awop ssaxdA) T8L61 umoig
I 0 1 I v60 91r 801 00STT 1 L [4 v 11em VSN 14 dwemg usain 1'8L61 umoig
dwoms paisasoq (1)

JTIVD
WAL WAS WAD  -1Id 114 TINDd V1A VIW VvSd VS vOd VDWW ONd uoneN  a€i§ uorday Tedn oyny

52

SIOIPUL JIB[NO[ED O] PAsN SI00S MBI PUE APNIS 31 JO UONEDO] pue rep ayl Suimoys (I a[qe] 29s) adK1 puepiom AQq poIos S[PPOUW POMIIADY

I1 374VL



53

IO~ ~0 Q@O0 OO0

-—-0 oo

[

OO = Q O ™ |

—_—0

OO0 O —m m—O —

CO~0QC | OO0 OO

COoOCCOCOC O

OO SO

OO ODOOOO ™

ot D | O e O o —

OO~ 0 OO ~

—_—_0 O

QO OO0~ O —~O

C = m~mOoO NN

Lan i o I e 00 ]

I OO0 m = = = N

—_—0 o

COC OO

690
610
8L°0
89°0
$8°0
8€°0
0ro
000

060
000
050
880
£T°0

69°0
$8°0
S$8°0
vL’0
S6'0
000
000

00
00
vo
Lo

850
690
98°0
68°0
000
000
000
000
000

00¢
008
008
0°0S
0°0S
0°0¢
0°0s
0T
00

00

(44
£ee
[ 48
0°0s
ooy
0°0s
0°0S
8'6¢
00

00

0°0s
00

00

00

0l

sy
sy
(414
8Ly
00

(=== =]
vy

[= =R e )

SE
09
09
ve

-

vT
vT

69T
8¢C

1748
ove

— o - - g

09¢
09¢

I

L
00TL
66666
69¢

0097
66666
(U4
1444

o g

—

€LT
€LT
09

— =

- O

€97
€LT

e et e U e e e e e e

—_

ST0¢

— e

-y N N~

=3
~

14
8¢

- PP~ D

Vi v N o~ —

Ayg-2e81v
A-sed|v
K1j-oe3v
Ay-oe3lv
Kpj-oesy
[eIOUD)
[elouany
ssewolg
sseworg
pod
osydonng
snuoydsoyqd
us8Ax0
[elousn
sseworg
snsoydsoyd
snioydsoyq
osmydonnyg
N.L

dL

ssewog
snuoydsoygd
[e12UDD)
[2ElicTs)
[esou2D)

sseurorg
sseworg
ssewiolg
[eIdusn)

1tem

wnyely,
118 M
1918
em
uoqre)
uoqe)
uoqie)
[eIaua0)
[e1auany

V'S
VSN
V'S
Vs
VSN
VSN
epuedn

SpueIayIdN YL
_Maon
aSsN
vV'Sn
BI[RAO[SOYDIZ])
rewuaq
VSN

V'§Nn

VSN
Frewuaq
AreSuny
Kre3unpy
V'§N

epeue))

V'S

V'§N

v'sn

V' §n
V'SN
VSN
VSN
VSN

VSN
VSN
VSN
v'sn
V'§N
VSN
VSN
VSN
VSN

LN
LN
LN
LN
LN

M

vD

14
M
M

M
INO
V1
v
14

vl
vl
vl
T4
14

HO
V1
Im

vO
vD
YO
vl
v

SUOISMO[IR A
3UOISMO[IP A
SUOISMO[[S A
SUOISMOO X
QUOISMOTIP X

eiduip aye]
381000 aye]
[eIousn)

Sny a3010 3
[esudaD)
[erauany
SurejuUnNoO
eruyoq s
dwoyQ a9e1
ouod ssaIdA)
wruip oye]
eiduip aye]
uafeyuado))
uoyeeq aye]
uojeeq aye]
eIfuip aye]
aye] uesH
uteld sreieg
ureid srelppq
1s9MYINOS

eueIRIRg
eueleleq
euRIRIRg
so1V oye]
sy oe]

EXSLIN-ING
euelRIRg
uosipepy
erduip aye
290uaJaNO
ONOUINO
EEPIIEIE) T
urejd srelpg
utejd smea2g

STIL6T
v'IL6t
€1L6l
TIL6t
T'1l61
T0861
10861
00861
0'8L61
0861
0861
oLLel
0’861
'8L61
o'sLel
o'6L61
o'6L6l
0Z861
Tz8e6l
1'z861
oeLe6l
0'6L61
Se861
v'e861
0'8L61

€861
TEB61
resel
T9L61
0'9L61

0'8L61
0'6L61
00861
00861
£7861
TT861
1'Z861
9¢861
£'€861

[RE-EIPNY
119851
119801
119821
[REXETPNN

‘e 19 sidiem
Te 10 SISI[eM
sIdNEM
usBeyiop

[23euyoay pue uuewyn
AOUIOA PUE AJYZIIIAS

Kayory

Aulojod pue JyopuQ
W[OYAN

YosHW

13[1ap) pUE SYONOT]
1o[1ap) pue s)Yono|
uasuaBipy
rejugjof

fejugjof

‘&1 jJoH

uojieH

‘TE 12 BZUBISO))

‘[® 19 eZURISO))
10pmolg

saxyvp moprys (S)
JepPIs

Tepis

Teps

YOS

YOSHIN

yssow uyvoly ()
e anym
YSnHOW pue su0l1§
Sunox pue jyny
‘[e 13 J9upien
G934

29449914

299214

‘e 19 vZUBISOD)

Te 12 BZURISOD)



54

‘uoneoyqnd swes ay) ul sppow apdnnuw 0} 13jo1 Jeak 1opun sjuiod rEUSp SUIMO[O] sIqUINN

ISIMISYIO () PUE SPOW JeY) J0) PAleINd[ed sem |1 J1 [ [enbo Koy (K[panoadsal ‘sisryipow 11j dwm pue ‘adeds ‘Jusuodwiod ‘WAL PUe ‘WAS ‘WAD
“Bursstus st L1 J1 (-) pUe ‘pAIBWINSD SI 1] JI T ‘PerewNsa S L[ JI 1 'JqEIE[NOMEd 10U ST 14 JT 0 = DTVILIA

‘Ppowt

9y} JO UONBUIULIZEP JO JUDYJA00 ‘L] ‘[Ppow 3yl Jo Ajresuljuou jusssdd “INDd {S[eAIdIUT W] IED JO IQUINU ‘YL (] ‘S[EAISIUI SWI [3POW JO J3qUINU = ‘Y ‘Sirun feneds
€IEp JO JoqUNU ‘y§(J ‘siun [eneds ppow jo saquinu ‘ySW isiuseuodwiod ejep jo sequinu ‘v ‘siusuoduiod [ppow jo mquinu ‘YO usuodwo) Sutppop redpuuyg ‘OWd

0 0 L T 660 0o 1 1 I I 1 1 uaBixo V'S vO [esouany 0'8L61 Suepm
0 0 0 0 000 0 T ¢ |4 1 L L ealry V'sn 14 uosBury ynog 7861 13]0D pue uosre]
0 0 0 0 000 0 T T ¢ t nm I eal1y VSN VI KQuno) joisug 'z86l 19[0) 10 vosIE]
0 0 0 0 000 9€ 0 Ot 0 L \} S ssewolg v'sn [e1ou2D) 0'6L61 Yosu pue dusay]
0 ¢ 1 T 890 0 $9 obz I 95 € £ PEm VSN v eueereq 00861 Ke( pue uosunydoy
suouputquio) (8)
- - - - - 00s - oWl - d 91 91 sseworg vV'sn v mouireg 0'8L61 uemiy
L 0 L I ¥80 005 00l T6T I 1 14 6  rnuoydsoyq V'S AV molreg 0'9L61 e 13 BTN
0 0 0 0 000 69 - 66666 - L S S sseworg vsn o AV moureg 0'8L61 sanog
0 0 0 0 000 005 0 - 0 L 0 s [esoU2D) v'sn AV adoys yioN 01861 ‘e 13 ysequagyneCy
oipuny (L)
0 0 0 0 0 0 0 0 I 0 I €24 puejury 0'6L6T DiSUEH pue B[OA['S
- - - - - 0s I I T L 8 8T [essusn ASSN poio8aoN 0'Z861  AOYYSLL Pue youmajrzeqg
suaf pup sSog (9)
0 0 0 0 000 067 1 66666 1 L ol ot KB310ug VSN NW 9ye] Sog xepa) vist Swenm
0 0 0 0 000 06T 1L 66666 1 L or ot A3souy ‘V'SN NW 9ye] 3og repa) £1L6T swenm
0 0 0 0 000 00 I 66666 I L or o1 A3roug V'S NW 9eT] Sog 1epa) TIL6L swrenim
0 0 0 0 000 00 1 66666 1 t I ¢ K31oug VSN NI aye] Sog repa) T'iL61 swernim
0 0 1 T T80 00 I 8v 1 1 9 9 pe VSN I renua) 0'8L61 T8 12 J9[Y M
DIVD
WAL WS WAD  -LId  LId INDd VId VIW vSd VSW vDd VOW DNd uoneN  Aelg uordoy Tes X loyiny

(panunuod) [ FIAV.L



55

Estimating the percent nonlinearity (PCNL) of the models was not always
easy. We entered a value of 50% if we knew the models were nonlinear but
could not disentangle them sufficiently to do a more precise estimate. The
maximum PCNL was 80% for a general bottomland hardwood model by
Odum and Brown (1975). Linear models are those with PCNL = 0. Almost
40% of the models we reviewed were linear.

As previously noted, calculation of the descriptive accuracy of the models
(FIT in Table II) was complicated by poor reportage and missing data
problems. The FITCALC modifier in Table II keeps track of whether the fit
was not given or calculatable (0), estimated from given information (1),
calculated from given information or reported directly (2), or calculatable
but missing (-). Additional fit modifier variables are given that note if the fit
was calculated for components (CFM = 1), space (SFM = 1), or time (TFM
=1). These additional modifiers were important for the calculation or
effectiveness. For example, if FIT was only calculatable for components
(CFM =1, SFM = 0, and TFM = 0) then effectiveness would be the product
of CFM, FIT, and the minimum of the data or model component articula-
tion index (from Table I1I), divided by three (the number of modes). If FIT
was calculable for all three modes (CFM =1, SFM =1, and TFM = 1), then
effectiveness was the average of the products of FIT and the minimum of the
data or model articulation index in each mode.

Table III lists the articulation indices calculated using equation 1 for each
model, by mode for the model and the data, listed in order of decreasing
average articulation. The average articulation index (AAI) is defined as the
minimum of the average model or data articulation listed in Table IIIL.
Different types of models are recognizable from their model articulation
indices. For example linear, static, input—output models — like Ogawa
(1977) or Costanza et al. (1983) — have zero model space and time
articulation, but generally high component articulation. Spatially articulated
models are rare, with the forest models of Botkin et al. (1972) and Phipps
(1979) being notable exceptions. Models that are highly articulated in time
are fairly common, but matching time articulation in the data is rare. The
models of Mitsch (1975), Gardner et al. (1980), Huff and Young (1980) and
Walters et al. (1980), are notable exceptions to this rule. Inspection of the
order of the models in Table III shows the possible trade-offs between
modes to achieve a high overall articulation. The models of Botkin et al.
(1972) and Phipps (1979) top this list by combining high component and
space articulation. These models simulate the growth of individual trees in
forest plots. Costanza et al. (1983) score high purely on component articula-
tion, while Walters et al. (1980) combine component and time articulation.

Table IV is a summary of model characteristics including the degree of
nonlinearity, average articulation index, descriptive accuracy index, and
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TABLE IV

Summary of model characteristics

Model reference PCNL Articulation Descriptive Effectiveness
Author Date aceuracy

Walters et al. 1980.2  50.0 20.5837 0.253333 7.82181
Gardner et al. 1980.0  50.0 7.1701 0.593333 6.38138
Jorgensen 1982.0 3538 9.1769 0.460000 6.33204
Huff and Young 1980.0 0.0 6.4299 0.286667 5.52973
Mitsch 1976.1 47.8 7.5038 0.466667 5.24333
Miller et al. 1976.0  50.0 4.8895 0.560000 4.10720
Brown ‘ 1978.1 416 3.8755 0.626667 3.64298
Ondok and Pokorny 19820 143 3.7226 0.586667 3.27587
Burns and Taylor 1979.1 8.0 3.5714 0.293333 3.14286
Wheeler et al. 1978.0 0.0 3.0303 0.273333 2.48485
Wiegert 1971.3  50.0 3.0436 0.260000 2.36364
Wiegert 1971.2  50.0 3.0436 0.226667 2.06061
Walters et al. 1980.1 50.0 20.5837 0.066667 2.05837
Botkin et al. 19720  20.0 38.1976 0.100000 1.93548
Richey 1977.0 333 3.7706 0.333333 1.79904
Sklar 1983.1 45.2 3.7797 0.266667 1.51189
Halfon 1979.0 0.0 1.4983 0.633333 1.42338
Hopkinson and Day  1980.0 0.0 3.3801 0.453333 0.93508
Paschal et al. 1979.0 50.0 6.3024 0.106667 0.90484
Stone and McHugh 1979.0 0.0 4.8535 0.230000 0.88462
Nyholm 1978.1 50.0 3.8360 0.153333 0.88228
Huff et al. 19730 50.0 4.8430 0.246667 0.55458
White et al. 1978.0 0.0 0.9096 0.386667 0.52759
Wiegert 1971.5 50.0 3.0436 0.230000 0.45098
Sklar 1983.0 452 0.7694 0.333333 0.37471
Wiegert 19714  50.0 3.0436 0.063333 0.35849

effectiveness index. Table IV indicates where the most effective modeling
efforts for freshwater wetlands have been, both in terms of model types and
the level of articulation of the models, since the models are listed in order of
decreasing effectiveness. Only 26 of the 87 models we reviewed were com-
plete enough to calculate accuracy and effectiveness, and only these models
are listed in Table IV. Among these, it is interesting to note that the highest
effectiveness scores were not for the models with the highest articulation or
the highest accuracy, nor were they exclusively linear or nonlinear. The most
effective models were those that achieved a balance between articulation and
accuracy. Note also that the effectiveness index shown in Table IV is not
simply the product of average articulation and descriptive accuracy indices
shown in Table IV. It is rather the average of the products of FIT and the
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minimum of model or data articulation for the three modes as described
above. Had we used the product of the averages instead, the results would
not have been substantially different, however, although the order of some of
the models would have changed.

DISCUSSION

Science can be viewed as the process of building successively ‘better’
descriptive and predictive models of the world. But how does one define
‘better’? In the past, scientists have tended to narrow their questions in order
to achieve higher accuracy. This leads to models with low articulation but
high descriptive accuracy. They say much about little. More recently, scien-
tists have begun to take a ‘systems view’ that looks at phenomena more
comprehensively. This strategy leads to highly articulated models with low
accuracy. These models say little about much.

The real effectiveness or explanatory power of a model is a function of
both how much it attempts to explain (articulation) and how well it explains
what was attempted (descriptive accuracy). The overall effectiveness index
captures both of these attributes.

The 26 models for which we could calculate accuracy and effectiveness
exhibit some interesting patterns in the relationship between articulation and
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Fig. 1. Plot of articulation index vs. descriptive accuracy index for the models reviewed in this
study, showing the current accuracy frontier.
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these variables. Figure 1 is a plot of average articulation on the x axis vs.
average descriptive accuracy on the y axis. It shows that the maximum
accuracy tends to decrease with increasing articulation. This relationship is
analogous to the relationship between thermodynamic efficiency and the rate
of energy transformation processes (Odum and Pinkerton, 1955;
Gutkowicz-Krusin et al., 1978). Efficiency is analogous to accuracy in that
both are performance ratios. The thermodynamic efficiency is maximal when
the rate of the energy transformation is zero (the reversible or Carnot limit)
and decreases as the rate increases. Articulation is analogous to the reaction
rate, and accuracy may decrease as articulation increases for reasons analo-
gous to those that cause efficiency to decrease with reaction rate. As the
thermodynamic rate increases, entropy and disorder increase and efficiency
drops. Likewise, as articulation increases there are more sources of error
introduced and maximum accuracy is lowered. It is important to note that
the points plotted in Fig. 1 do not all fall on a particular line, but rather
below an upper bound line that can be thought of as an ‘accuracy frontier’.
Many of the models are below the accuracy frontier (the upper bound) for
their degree of articulation because they have not been ‘completed’ suffi-
ciently. It may be possible to push the frontier farther out with additional
effort (and cost), but we hypothesize that there is a fundamental limit to this
process, such that additional articulation can only be achieved at some cost
in accuracy.

Figure 2 is a plot of the articulation index on the x axis vs. model
effectiveness on the y axis. The shape of this plot is determined by the shape
of the accuracy vs. articulation plot and the definition of effectiveness. The
upper bound line of maximum achieved effectiveness (the effectiveness
frontier) in Fig. 2 is low for low articulation/high accuracy models (those
that say much about little), increases to a maximum for articulation values
around 25, and decreases again for high articulation/low accuracy models
(those that say little about much). This implies that there is an optimum
articulation for maximum model effectiveness at a point substantially below
the maximum articulation.

It is important to note that this interpretation depends in large part on the
scores for the one model we reviewed with high articulation (Botkin et al.,
1972). It therefore cannot be stated with much force until additional data are
collected. In informal conversations with ecosystem modelers on this point,
however, several unpublished, high articulation models that tend to fit the
pattern were mentioned. At this point it should best be considered a
hypothesis with a small amount of supporting data.

If it proves accurate, the implications of Fig. 2 for model builders are
obvious. There is an optimum size or complexity or articulation as we have
called it beyond which the ‘benefits’ of additional articulation are out-
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Fig. 2. Plot of articulation index vs. effectiveness index showing the current effectiveness

frontier.

weighted by the ‘costs’ of lowered accuracy. If additional studies are suppor-
tive, it could be very useful for model builders and consumers of model
output. All types of models are expensive, and ecosystem models are among
the most expensive. The question of how complex or articulate to make a
model is of primary concern in any modeling study. A reliable guide to
solving this problem would help to wisely use the limited resources that can
be devoted to ecosystem modeling.

In a more general sense, this result speaks to a fundamental question in
science concerning how one should rank alternative explanations. In the past
both maximum accuracy and maximum articulation (under different names)
have been used as ranking criteria, without much discussion of their poten-
tial limits or possible trade-offs. For example, the model of science advoc-
ated by Popper (1959, 1972) assumes that anything less than 100% accuracy
‘falsifies’ a model, and that science achieves ‘truth’ by successively identify-
ing and discarding ‘false’ models. We believe the situation is not nearly so
black-and-white in most cases, as our modeling review has demonstrated. We
must speak of degrees of accuracy and articulation and the trade-offs
between them, rather than in the absolute terms of truth and falsehood when
evaluating complex models. We hope that this paper stimulates more discus-

sion on these trade-offs, and we propose ‘model effectiveness’ as one way to
begin quantifying them and ranking models in a more realistic way.
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