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ABSTRACT 

Turner, M.G., Costanza, R. and Sklar, F.H., 1989. Methods to evaluate the performance of 
spatial simulation models. EcoL Modelling, 48: 1-18. 

Quantitative methods are necessary to compare spatial patterns and evaluate the perfor- 
mance of spatial simulation models. We present and review several approaches to the analysis 
and comparison of spatial patterns. The methods are readily applicable to digital data that 
are in matrix (i.e., grid cell or raster) format, and include: (a) indices of particular aspects of 
spatial pattern, including fractal dimension, contagion, and interface; (b) spatial predictabil- 
ity; and (c) a variable resolution approach for measuring the degree of fit between two 
patterns. Because these methods measure different aspects of spatial patterns, they may be 
differentially suited to particular modeling and analysis objectives. In this paper, we describe 
the methods, apply each method to a sample data set, then evaluate the information provided 
and appropriate situations for its use. 

INTRODUCTION 

Most ecological simulation models use state variables that vary through 
time but are spatially aggregated (Costanza and SEar, 1985). This approach, 
however, may not be adequate to address current ecological questions at 
large spatial scales (Risser et al., 1984; DeAngelis and Waterhouse, 1987; 
Meentemeyer and Box, 1987; Urban et al., 1987). For example, spatial 
patterning of ecosystems is important in landscape-level models (e.g., Turner, 
1987, 1988; Turner et al., 1989), and interactions between spatial elements, 
such as the flow of energy, materials, and species among component 
ecosystems, must be incorporated (e.g., Kesner, 1984; Sklar et al., 1985; 
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Costanza et al., 1986). Comparisons between predicted spatial patterns and 
actual data are thus required to evaluate spatially explicit models. Estab- 
lished statistical measures of goodness-of-fit can be used for relatively 
simple comparisons, but new methods may be required to evaluate complex 
spatio-temporal phenomena. 

We present and review several new approaches to the analysis and 
comparison of spatial patterns. The methods are readily applicable to digital 
data that are in matrix (i.e., grid cell or raster) format, and include: (a) 
indices of particular aspects of spatial pattern, including complexity, conta- 
gion, interface, and anisotropy; (b) an index of predictability (Colwell, 1974) 
applied to spatial patterns; and (c) a variable resolution approach for cell by 
cell comparisons (Costanza, 1989). These methods measure different aspects 
of spatial patterns, and therefore they may be differentially suited to 
particular modeling and analysis objectives. In this paper, we describe the 
methods, apply each method to a sample data set, then evaluate the 
information and appropriate use of each technique. 

METHODS 

Indices of spatial pattern 

A variety of indices can be used to quantify overall characteristics of 
spatial patterns. These indices are useful when statistical aspects of the 
spatial patterns must be accurately simulated, but the precise location of 
particular cells is less important. 

Complexity of spatial patterns: Fractal dimension. Fractal analysis 
(Mandelbrot, 1977, 1983) was introduced as a method to study spatial 
patterns that are similar when observed at many scales (i.e., 'self-similar'). 
Boundaries or shapes can be quantified using fractals, and the fractal 
dimension can then be used as a measure of the complexity of spatial 
patterns. This application has been useful in studies of landscape patterns, 
the spatial patterns resulting f rom physical, biological and human forces 
over a geographic area. Fractals have been used to compare simulated and 
actual landscapes (Gardner et al., 1987; Turner, 1987), to compare the 
geometry of different landscapes (Krummel et al., 1987; Milne, 1988; 
O'Neill et al., 1988; Turner and Ruscher, 1988), and to judge the relative 
benefits to be gained by changing scales in a model or data set (Burrough, 
1986). A perimeter to area relationship can be used to calculate the fractal 
dimension of patch perimeters using grid cell data (Burrough, 1986; Gardner 
et al., 1987). Using all patches of a single cover type (or all cover types) in a 
landscape scene, a regression is calculated between log (perimeter/4), the 
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length scale used in measuring the perimeter and log (size) of each patch. 
The fractal dimension of the patch perimeters then equals twice the slope of 
the regression line. The dimension can range between 1.00 and 2.00, with 
higher values representing more convoluted boundaries; the expected fractal 
dimension of a random pattern is 1.5. Calculating the fractal dimension with 
least-squares is quite reliable, with the r 2 values generally exceeding 0.95. 

Adjacency and contagion: Nearest neighbor probabilities. Nearest neighbor 
probabilities, q i , j -  sometimes referred to as Markovian spatial transition 
probabilities (Lin and Harbaugh, 1984) - represent the probability of cells 
of land use type i being adjacent to cells of land use type j.  The qi,j values 
are calculated by dividing the number of cells of type i that are adjacent to 
type j by the total number of cells of type i. A landscape with very large 
patches of type i will have a relatively high q~,~; however, if the same area of 
type i is distributed over many small patches, the qg,i will be low. Turner 
(1988) used these probabilities to compare simulated and actual landscape 
patterns in Georgia. 

Probabilities of adjacency are relative easy to calculate with a single pass 
through a matrix of land cover types. Adjacency information can also be 
distilled to a single index of the overall contagion (O'Neill et al., 1988) on an 
m × n landscape containing s cover types using the formula: 

m n 

D 2 = 2 s l o g s +  Z Eqi , j l °gqi , j  (1) 
i=1 j = l  

The contagion index, D 2, measures the extent to which land uses are 
aggregated or clumped. At high values of D 2, the summation term deviates 
from the equiprobable maximum in which all adjacency probabilities are 
equal, and large, contiguous patches are found in the matrix. At low values 
of D 2, the landscape is dissected into many, small patches. 

It may also be of interest to compare nearest neighbor probabilities that 
are calculated both vertically and horizontally such that anisotropism, or 
directionality, in the spatial pattern can be measured. Directional probabili- 
ties are determined by dividing the number of cells of type i that are 
horizontally or vertically adjacent to cells of type j by the total number  of 
cells of type i. The difference between the horizontal and vertical probabili- 
ties of adjacency can indicate directional alignment of spatial components.  

Interface: Edges between components. The amount  of edge between differ- 
ent spatial components may be important for the movement of organisms or 
materials across boundaries (e.g., Wiens et al., 1985; Turner and Bratton, 
1987), and the importance of edge habitat for various species is well known. 
Thus, it may be important to monitor edges when predicting spatial patterns 
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and when integrating pattern with function. Edges can be simply calculated 
by adding both vertical and horizontal edges of cells between land uses and 
multiplying by the length of the side of a cell. 

Spatial predictability 

Information theoretic concepts were applied to estimating the degree of 
predictability of periodic phenomena by Colwell (1974). Predictability in 
this context refers to the reduction in uncertainty about one variable that 
can be gained from knowledge of another. For example, if the seasonal 
rainfall pattern in an area is predictable (e.g., there is always a severe dry 
summer), then knowing the time of year provides information about rainfall 
(if it's summer, it's probably dry). If there is no relationship between rainfall 
and season, the rainfall is relatively unpredictable from knowledge of the 
time of year. Application of these techniques to spatial data measures the 
reduction in uncertainty about the state of a particular pixel obtained from 
other knowledge about the pattern. Regularities in spatial data are identified 
and ranked on a scale from 0 (unpredictable) to 1 (predictable). The result 
may be interpreted as the degree of departure of the scene from a random 

T A B L E  1 

Numerica l  da ta  for the 20 x 20 base  matr ix  (Fig. 1A) 

1 1 3 3 3 1 2 2 2 1 1 3 3 3 3 1 2 2 1 1 
1 1 1 1 1 2 1 1 1 1 1 3 3 1 3 1 1 1 2 1 
3 3 3 1 3 2 1 2 2 2 1 1 1 1 1 2 1 1 2 2 
3 3 1 1 1 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 
3 3 1 3 1 1 1 1 2 2 2 2 2 1 1 2 2 2 2 1 
3 3 3 3 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 
3 1 1 3 3 3 3 1 3 3 3 1 1 2 2 2 1 1 2 2 
1 1 3 3 3 3 3 3 3 3 3 1 1 2 2 2 2 1 1 2 
2 2 2 2 2 1 1 1 1 3 3 3 1 1 1 2 2 1 1 1 
2 2 1 2 2 2 2 2 1 3 3 3 2 2 1 2 2 2 1 1 
2 2 1 1 2 1 2 1 2 1 1 1 2 2 1 2 2 1 1 1 
2 1 2 1 2 1 2 2 1 1 1 1 2 2 2 1 2 2 2 2 
1 1 1 2 2 2 2 2 1 1 1 1 2 2 1 1 1 2 2 1 
3 3 1 1 2 2 2 2 3 3 3 2 2 2 1 2 1 1 1 1 
3 3 3 3 1 1 1 3 3 3 1 1 1 1 2 2 2 1 1 2 
3 3 3 3 2 2 1 3 3 1 2 2 2 1 2 1 1 1 1 1 
3 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 1 1 3 3 
3 1 1 1 2 2 1 1 2 1 1 2 2 1 3 1 1 1 3 3 
1 1 1 3 2 1 2 2 2 2 1 2 2 1 1 3 3 3 1 3 
1 1 3 3 1 1 1 2 2 2 2 2 2 2 2 1 1 3 1 3 

Integers represent  different  da ta  categories, such as land cover. 
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(unpredictable) pattern. We develop two measures: (a) spatial adjacency 
predictability, based on the state of adjacent pixels (similar to the contagion 
index, but including higher level adjacency information, i.e., the state of 
adjacent pairs, triplets, quartuples etc.); and (b) spatial address predictabil- 
ity, based on the row or column address of the pixel. 

_=_=[][][]=-- _ ~ - [ ] [ ] [ ] [ ] - -  _=_= 
[ ] [ ] ~ = - -  _= 
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~ .  Random H. Checkerboard 
Fig. ]. Test data for demonstrating the methods. All matrices are 20 x 20 arrays with three 
categor ies  (e.g., l a n d  cover,  vegeta t ion ,  ec.) each.  Ma t r i ce s  A t h r o u g h  G have  the  s a m e  
p r o p o r t i o n s  of  each  ca tegory  (ca tegory  1 = 0.45; ca tegory  2 = 0.35; ca tegory  3 = 0.20). Ma t r i x  
H has  an  app r ox im a te ly  e q u i p r o b a b l e  d i s t r ibu t ion  of  the  th ree  categories .  
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TABLE 2 

First-order contingency table used to calculate spatial predictability for the 20 x 20 matrix in 
Table 1 

Category Category Totals 

1 2 3 

1 187 104 55 346 
2 102 161 8 271 
3 52 2 89 143 
Totals(Xj) 341 267 152 760 a 

Entries (Ni4) are the frequency that the column category is followed by the row category, 
either horizontally or vertically (e.g., category 1 is followed by category 2, 102 times; category 
2 is followed by category 1, 104 times). First-order predictability (P1) = 0.222. 

Note that for an m x m matrix, the total is equal to 2 [m x(m -1)] which is 2 (20-19) in 
this example. 

T o  es t imate  spatial  ad jacency  predic tabi l i ty ,  a con t ingency  ma t r ix  is 
deve loped  with rows co r re spond ing  to the states of  the pixels, an d  co lumns  
co r re spond ing  to  groups  of  n pixels. F o r  example ,  using numer ica l  d a t a  of  
the scene in Fig. 1A (Table  1), f i rs t -order  (n = 1; Tab le  2) and  s econd-o rde r  
(n  = 2; Tab le  3) con t ingency  matr ices  were  developed .  T h e  rows represen t  
the three cover  types, and  the mat r ix  entr ies  are the n u m b e r  of  t imes each  
row ca tegory  occured  adjacent  to the c o l u m n  ca tegory  (or ca t egory  pa i r  [as 
in Table  2], tr iplet ,  etc. in h igher -order  analyses) r ep resen ted  b y  each  
colunm.  The  second-order  con t ingency  mat r ix  (Tab le  3) incorpora te s  grea ter  
detai l  than  the first, t abula t ing  the n u m b e r  of  t imes that  an  o r d e r e d  pai r  of  
categories is ad jacent  to ano the r  ca tegory  (e.g., ho w  f requen t ly  are two fores t  
pixels fol lowed by  a grassland pixel). H ighe r -o rd e r  mat r ices  con t inue  to 
incorpora te  more  in fo rmat ion ,  represen t ing  the f r equency  that  an  o r d e r e d  
group  of  n pixels is ad jacent  to a par t icu la r  category.  

TABLE 3 

Second-order contingency table for the 20 x 20 matrix in Table 1 

Category Category pairs Totals 

11 12 13 21 22 23 31 32 33 

1 86 29 12 58 66 0 31 3 36 321 
2 57 68 3 30 85 0 13 5 5 266 
3 33 0 34 10 2 2 9 0 43 133 
Totals(Xj) 176 97 49 98 153 2 53 8 84 720 a 

Entries ( N / , j )  a r e  the frequency that the column category (ordered pairs) is followed by the 
row category (either horizontally or vertically). Second-order predictability (P2) = 0.228. 
a Note that for an m × m matrix, the total is equal to 2 [m x(m -2)] which is 2 (20-18) in 
this example. 
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To estimate predictability based on the location of the pixel in the land 
use matrix (address predictability), the contingency matrix is developed with 
rows corresponding to the states of the pixels. The columns in the con- 
tingency matrix represent the row or column location of a pixel in the land 
use matrix (e.g., rows I through 20). Matrix entries represent the number of 
occurrences of each state in each row or column. Address predictability may 
be sensitive to banded patterns in the data. 

Following Colwell (1974) we define N,j as the elements in the contingency 
matrix of size s by t, Xj as the column totals, Y~ as the row totals, and Z as 
the grand total, or: 

s 

Xj = Y'~ Nij (2) 
i=1 

t 

r,= E u,j (3) 
j = l  

s t 

z =  E E N,j (4) 
i =1  j = l  

The uncertainty with respect to X is: 

j = l  

and the uncertainty with respect to Y is: 

Y~ l o g ~  1 (6) H ( Y ) = -  ~ 
i=1  

and the uncertainty with respect to the interaction of X and Y is: 

H ( X Y )  = - E ~ -~- log 2 (7) 
i j 

Note that the first-order contingency matrix is related to the matrix of 
nearest neighbor probabilities (Q) by the relationship N, J X j =  qij. The 
conditional uncertainty of X given Y is: 

I L ( Y )  = I-I( X Y )  - I-I( X ) (8) 

Finally, a measure of predictability (P)  with the range (0, 1) can be defined 
as"  

P =  1 Hx(Y---~) = 1 - H ( X Y )  - H ( X )  (9) 
log s log s 

Predictability will be minimal when all the elements in the contingency 
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matrix (No.) are equiprobable (i.e., when all entries are the same) and will be 
maximized when only one entry in each column is non-zero. Most spatial 
data will fall between these extremes. For example, the contingency matrix 
in Table 2 has a predictability of 0.222 indicating that if the state of a given 
pixel is known, the uncertainty about the state of the following pixel (either 
horizontally or vertically) is reduced by 22.2%. Highly clumped patterns will 
have a high adjacency predictability. First-order spatial predictability (P1) 
and the contagion index (D2) yield similar, but not identical, information. 
However, P is scaled on the range (0, 1) whereas O 2 is not. 

Multiple resolution goodness-of-fit 

A cell by cell comparison between a model's predicted spatial patterns 
and the actual patterns is necessary if the location of different habitats 
relative to their actual locations is important. However, a comparison done 
only at a fine resolution may not adequately evaluate the prediction. A 
standard fit procedure can be applied at a number of spatial resolutions, and 
the change in fit with resolution of the sampling window may be a better 
tool for interpreting the patterns predicted by a model (Costanza, 1989). We 
use an algorithm for this purpose that gradually decreases the resolution of 
comparison by increasing the size of the sampling window used to calculate 
the fit. For a sampling window size of one cell (the cell by cell comparison), 
the fit is the proportion of cells that are correctly matched, regardless of 
their spatial arrangement. For example, if a particular 2 × 2 window had 
two cells of forest and two of marsh in both scenes, the fit would be 100% 
regardless of how the cells were arranged within the windows. If one 
sampling window had one forest and three marsh, while the other had two 
of each category, the fit would be 75% (three out of four were correct). The 
sampling window is moved through the scene one cell at a time until the 
entire image is covered. The average fit over all sampling windows of a 
particular size is then calculated, representing the overall fit at that resolu- 
tion. 

The formula for the fit at a particular sampling window size (Fw) is: 

tw[ ali a2i ] 
Y'~ 1 - i=1 S 

s=l 2w2 

r w = (11) 
tw 

where Fw is the fit for sampling window size w, w the dimension of one side 
of the (square) sampling window, a~i the number of cells of category i in 
scene k in the sampling window, p the number of different categories (e.g., 
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habitat types) in the sampling windows, s the sampling window of dimen- 
sion w by w which slides through the scene one cell at a time, and tw the 
total number  of sampling windows in the scene for window size w. 

If two scenes were identical, a plot of F w against w would yield a straight 
line at F w = 1.00. If the scenes had the same proportions of cover types but  
the spatial patterns were very different, the line would increase gradually 
until the window size was the same as the study area, at which point it 
would reach F w = 1.00. If there were slight differences in the two patterns, 
the curve would increase rapidly at first then asymptotically approach 
F w = 1.0, indicating that the patterns were relatively well-matched. If two 
randomly generated scenes with s cover types were compared, the expected 
fit would start at 1 / s  and rapidly increase to 1 as the expanding sampling 
window encompassed the statistical similarity between the two scenes. 

An overall index of fit can be calculated as a weighted average of the fits 
at different window sizes. By selecting the value of a constant, k, in the 
following formula, differential weight can be assigned to particular window 
sizes: 

H 

E Fw e -k<w-" 

Ft = w=]n (12) 
E e_k(w_1) 

w=l 

where F t is weighted average of the fits over all window sizes, F w the fit for 
sampling windows of linear dimension w, k a constant, and w linear 
dimension of a sampling window. When k = 0, all window sizes are given 
the same weight. When k = 1, only the smaller window sizes are important.  
The value of k can be adjusted depending on the model  objectives and the 
quality of the data. 

DATA 

Sample 20 × 20 matrices (Fig. 1) were used to compare the methods 
described above. Matrices A through G contain three cover types (consid- 
ered to represent any kind of categorical data) in the same proportions 
(Pl  = 0.45; p:  = 0.35; P3 = 0.20). However, the spatial arrangements of the 
cover types vary. Matrix A (Fig. 1A) is the base case, which is then altered 
(Fig. 1) by: misregistration (B); by creating anisotropy in one cover type 
(C); by flipping the matrix vertically (D); by creating a fragmented pat tern 
(E); and by creating a highly clumped pat tern (F). Matrix G is a r andom 
pattern that maintains the same category proportions as the other matrices 
(Fig. 1G). Matrix H is a checkerboard (Fig. 1H) with the three categories in 
equal proportions (p l  = P2 = P 3  = 0.33). 
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RESULTS 

lndices of spatial patterns 

The fragmented and random matrices (Fig. 1E and G) exhibit the most 
complex spatial patterns as measured by the fractal dimension (Table 4). 
The anisotropic matrix (Fig. 1C) has a relatively simple overall pattern, 
reflected by a fractal dimension of 1.469, although the clumped pattern 
should give a lower result if there was a sufficient number of patches to use 
for the calculations. The checkerboard matrix (Fig. 1H) has the most simple 
patch shapes (all squares), whose perimeters have a fractal dimension of 1.0, 
by definition. The fractal dimensions in matrices A, B and D show little 

T A B L E  4 

Spatial  indicators  for sample matrices (Fig. 1) having the same fract ion of the mat r ix  

occupied by  different  cover types ( P l  = 0.45; P2 = 0.35; P3 = 0.20) 

Measure  Matr ix  

A B C D E F G H 
Original  Misreg- Aniso-  Fl ipped Frag- Clumped  R a n d o m  Checker-  

istered tropic men ted  boa rd  

Fractal dimension 
Overall  1.506 1.513 1.469 1.506 1.629 _ a 1.622 1.000 b 
Cover  type 1 1.565 1.577 1.542 1.565 1.678 _ a 1.712 1.000 b 
Cover  type 2 1.467 1.481 1.453 1.467 1.506 _ a 1.559 1.000 b 
Cover  type 3 1.432 1.433 1.199 1.432 1.450 - a 1.504 1.000 b 

Probabilities of adjacency 
qll  Horizonta l  0.586 0.565 0.547 0.586 0.433 0.847 0.413 0.531 
ql l  Vertical 0.512 0.512 0.659 0.512 0.310 0.831 0.419 0.531 
q22 Hor izonta l  0.615 0.597 0.615 0.615 0.231 0.715 0.417 0.524 
q22 Vertical 0.591 0.591 0.583 0.578 0.191 0.884 0.377 0.524 
q33 Horizonta l  0.618 0.628 0.387 0.618 0.093 0.750 0.203 0.524 
q33 Vertical 0.553 0.553 0.813 0.575 0.107 0.851 0.128 0.524 

Contagion (D2) 
Horizonta l  4.112 4.016 3.877 4.112 3.583 4.641 3.422 4.516 
Vertical  4.045 4.045 4.389 4.067 3.640 5.141 3.468 4.516 
Average 4.078 4.035 4.133 4.089 3.612 4.891 3.445 4.516 
Edges 
1 and  2 206 205 192 206 291 80 225 120 
1 and  3 107 110 85 107 142 36 125 120 
2 and  3 10 13 26 10 128 24 139 120 
Total  323 328 303 323 561 140 489 360 

a insufficient n u m b e r  of patches for reliable regression. 
b canno t  be calculated by  regression; all patches  are perfect  squares and  their  per imeters  are 
straight lines. 
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difference, reflecting the similarity in their spatial patterns. The decreased 
complexity in cover type 3 in the anisotropic matrix is measured by a low 
fractal dimension of 1.199. 

The probabilities of adjacency (Table 4) appear more sensitive to fine 
differences in pattern than the fractal dimension. All horizontal qi,i's exceed 
the vertical q~,i's in matrix A, indicating a slight horizontal orientation. 
When A is misregistered by two columns, as in matrix B, the horizontal q~,~'s 
change slightly while the vertical q~,~'s remain the same. Thus, the probabili- 
ties are sensitive to slight changes in spatial adjacencies. The anisotropy of a 
spatial component is also readily apparent in differences between horizontal 
and vertical adjacencies. For example, the vertical orientation of cover type 
3 in matrix C (Fig. 1C) is reflected in the difference between q3,3 vertical 
(0.813) and q3,3 horizontal (0.387) (Table 4). In contrast, when spatial 
patterns are very fragmented (matrix E) or clumped (matrix F), the qi,~'s are 
low or high, respectively, but show little difference between the horizontal 
and vertical directions. The isotropic pattern (matrix H) exhibits no dif- 
ference in horizontal and vertical adjacencies. 

The contagion index differentiates the fragmented (D2=3.612) and 
c l u m p e d  ( O  2 = 4.891) matrices (Table 4), suggesting that D 2 may be an 
adequate indicator of broad-scale pattern. However, D 2 is not sensitive to 
the vertical inversion (Fig. 1D) or to misregistration (Fig. 1B). The checker- 
board pattern also has a relatively high contagion value (4.516) indicating a 
clumped pattern. Although contagion does not necessarily reflect direc- 
tionality, anisotropy can be identified in differences between vertical and 
horizontal contagion values (4.389 and 3.877, respectively, in matrix C). 
However, the cause of directionality (i.e., which components are anisotropic) 
cannot be determined using D 2 alone. 

The amount of edge in the matrices is not sensitive to the precise spatial 
patterns (Table 4). The edges present in matrices A, B, C and D are quite 
similar although the locations of the patches vary. Edges values are inversely 
related to the contagion in the matrix, such that patterns with low contagion 
have many edges (matrices E and G) and patterns with high contagion have 
few edges (matrix F). 

Spatial predictability 

Matrices A through D are similar in their adjacency predictability (Table 
5); all have a P1 of approximately 0.2. This is not surprising because their 
spatial patterns are statistically similar (Table 4). The adjacency predictabil- 
ity clearly differentiates matrices A - D  from the clumped matrix (Pa ~ 0.47) 
and the fragmented and random matrices (Pa -- 0.07 and 0.04, respectively). 
The predictabilities measured in the random and fragmented matrices ap- 
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TABLE 5 

Summary of predictability measures applied to the test data 

M . G .  T U R N E R  E T A L .  

Matrix 

Misreg- Aniso- Flipped Frag- Clumped Random Checker- 
istered tropic vertically mented board 

A B C D E F G H 

Spatial adjacency predictability 
P1 0.2219 0.2042 0.2062 0.2178 0.0751 0.4674 0.0376 0.3700 
Pe 0.2283 0.2133 0.2103 0.2222 0.0826 0.4799 0.0447 1.0000 
P3 0.2617 0.2692 0.2601 0.2589 0.1102 0.5266 0.0739 1.0000 
P4 0.2999 0.3024 0.3093 0.3030 0.1923 0.5548 0.1586 1.0000 
Spatial address predictability 
Px 0.120 0.120 0.222 0.120 0.067 0.221 0.066 0.009 
Py 0.129 0.129 0.097 0.129 0.081 0.144 0.083 0.009 
Pavg 0.124 0.124 0.159 0.124 0.074 0.182 0.074 0.009 

P1 through P4 refer to the predictability of the state of a pixel given the states of groups of 
one, two, three, and four adjacent pixels. Px and Py refer to the predictability of a pixel given 
only its row (x) or column (y). Pavg is the average of Px and Py. 

proach, but  do not  reach, zero. This is because the propor t ions  are not  
equiprobable and our examples are finite, relatively small matrices. Using 
address predictability (Table 5), the anisotropic matrix is more  predictable if 
the row address is known than if the co lumn address is known (Px = 0.222 

H H ~  H H ~  H H ~  
H H ~  H H ~  H H ~  

I H ~  H H ~  H H ~  HH 
I M ~  H H ~  H M ~  HH 

i H ~  H H ] ]  H H ] ~  HH 
I H ~  H H ~  H N ~  HH 

H H ~  H H ~  H H ] ~  
H H ~  H H ~  H H ~  

I H ~  H H ~  H H ~  HH 
I H ~  H H ~  H H ~  HH 

A .  Checkerboard 1 B. Checkerboard 2 

P1 = 1 .O0 P1 = 0.37 

P2 = 1.00 P2 = 1.00 

P3 = 1.0 O P3 = 1 .O 0 

P4:l°° %:1oo 
Fig. 2. Repeating checkerboard patterns at different base scales. Both patterns are predict- 
able, but this is not apparent in B until the second order predictability analysis is done 
because the pattern is composed of 2 × 2 blocks of pixels. 
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and P y =  0.097), reflecting the vertical bands that were introduced into 
matrix C. The checkerboard matrix is least predictable from knowledge of 
the row or column address of a cell (Px = PY = 0.009), because each row and 
column are statistically identical. 

There are no large breaks or periodicities in the patterns in matrices A 
through F, and higher order adjacency predictabilities (P1-P4) yield little 
additional information about these patterns (Table 5). However, the multi- 
level analysis does elicit significant additional information in certain cases. 
In the checkerboard matrix, second-order spatial predictability is 1.00, 
indicating complete predictability at that scale. Thus, spatial predictability 
can identify the spatial scales of periodicities in a pattern. For example, the 
scale of the checkerboard pattern is one pixel in Fig. 2A, whereas the pattern 
repeats every two pixels in Fig. 2B. Spatial predictability (P1 through P4) is 
1.0 for the pattern in Fig. 2A, as the periodicity is apparent even in the 
first-order analysis. The pattern in Fig. 2B has low predictability with a 
first-order analysis (/'1 = 0.370) because the periodicity is not apparent at 
this level, but the second order analysis indicates complete predictability. 
Therefore, the most appropriate use of the higher-order predictabilities may 
be to identify patterns that show periodicity at different spatial scales. 

Multiple resolution fitting 

Results of the multiple resolution fitting analyses (Table 6, Fig. 3) 
indicate that the base matrix is most similar to the anisotropic matrix (at 
k = 0.1, F t = 0.914). The positions of pixels of category 2 were retained 

TABLE 6 

Goodness-of-fit  between the original matrix (A) and other matrices using (1) the multiple 
resolution fit procedure and differential weighting of the windows and (2) cross predictability, 
which is the predictability of a pixel on one map given its corresponding state on another 
map 

Comparison Weighted average Cross 
of goodness-of-fit ( F  t) predictability 

k = 0.0 k = 0.01 k = 0.1 k = 1.00 Pc 

A x B: Misregistered 0.821 
A x C: Anisotropic 0.930 
A x D: Flipped vertically 0.793 
A x E: Fragmented 0.856 
A x F: Clumped 0.709 
A x G: Random 0.768 
G X G: Random × Random 0.801 
E x G: Fragmented × Random 0.829 

0.815 0.764 0.541 0.1016 
0.928 0.914 0.856 0.6475 
0.787 0.736 0.500 0.0657 
0.852 0.821 0.702 0.2363 
0.702 0.649 0.460 0.0544 
0.761 0.706 0.450 0.0465 
0.800 0.753 0.502 0.0757 
0.823 0.775 0.495 0.0406 
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Fig. 3. Fit versus window size for various pairs of the matrices in Fig. 1 using the multiple 
resolution fitting method. For example, A x B is the comparison of the base matrix (A) with 
the misregistered matrix (B). 

when anisotropy was introduced, and only a small fraction of the other two 
categories was rearranged. Thus, a relatively high cell by cell agreement is 
observed between the anisotropic and base matrices. 

The fragmented pattern exhibits the next best fit (at k = 0.1, F t = 0.821) 
with the base matrix. This seems counter-intuitive, because the fragmented 
and random patterns are similar (Tables 4 and 5). However, the fragmented 
pattern was created from the base matrix by arbitrarily rearranging some of 
the pixels in Fig. 1A and not by randomly creating a new pattern. Therefore, 
more pixels in the fragmented pattern correspond to pixels in the base 
matrix (--68%) than expected at random (~  33%), even though the frag- 
mented and random patterns appear similar. 

The base matrix does not fit well with the clumped or random patterns, as 
might be expected. However, the misregistered and vertically flipped matrices 
also do not fit well with the base matrix, although their patterns are identical 
except for slight misregistration. This result indicates a limitation of the 
multiple resolution fitting procedure and suggests the need to handle misreg- 
istration problems separately (Costanza, 1989). If registration between pat- 
terns is questionable, a cross-correlation analysis could be used to determine 
the point of maximum registration. After the maps have been registered, the 
multiple resolution fitting procedure should produce more reasonable re- 
sults. 

Cross predictability (Pc) can be calculated for pairs of maps to determine 
the predictability of the state of pixels on one map given their corresponding 
state on another map. This is another goodness-of-fit test and the results for 
our example maps are included in Table 6. This index of fit correlates well 
with the multiple resolution test ( r2=0.918 for k =  1.0) but yields a 
different perspective and range of values. Values for this test range from 
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approximately 0.04 for comparisons with random maps to 0.66 for the base 
map compared with the anisotropic case. This indicates that knowledge of 
the category of a pixel on the base map removes 66% of the uncertainty 
about its state on the anisotropic map, but this knowledge removes only 
4.6% of the uncertainty about its state on a random map. 

DISCUSSION 

What information is provided by each of these methods? And what is the 
relative cost to calculate each one? A brief summary is presented in Table 7. 
The indices of spatial pattern (fractal dimension, nearest neighbors probabil- 
ities, contagion, edges, spatial predictability) give statistical measures of 
whether certain aspects of the pattern are comparable, but do not indicate 
whether the cell by cell pattern is exactly (or approximately) matched. This 
may be adequate when one wishes to predict overall behavior of a system, or 

TABLE 7 

Summary of methods for quantifying and comparing spatial patterns 

Measure Characteristic Computation Use 

Fractal dimension complexity of identify size and area 
spatial pattern of each path (time and 

memory intensive; 
can be unreliable 
for small patches) 

single pass through the 
matrix (fast, even for 
large matrices) 

uses the probabilities of 
adjacency (fast) 

Nearest neighbor adjacency and 
probabilities anisotropy 

Contagion fragmentation 
index or clumping 

Edges edge between single pass through the 
components matrix (fast) 

Spatial predictability departure uses n th order 
from random; probabilities 
periodicity at of adjacency 
different scales 

Multiple resolution correspondence calculates goodness-of- 
fitting to actual -fit with decreasing 

locations resolution 

broad-scale measure 
of pattern; 
may reflect scale 
of processes 
creating pattern 

fine-scale measure 
of pattern and 
directionality 

overall measure; 
can also identify 
anisotropy 

when exact amount of 
interface is important 

departure from ran- 
dom on a (0, 1) scale; 
scale-dependent 
patterns 

pattern matching 
when accurate spatial 
locations are required 
between matrices 
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when these pattern aspects are otherwise important. The fractal dimension 
measures pattern complexity, providing information about patch shape, but 
does not address the adjacency of different cover types. The fractal has also 
been hypothesized to reflect the scale of the factors causing the pattern 
(Krummel et al., 1987). Nearest neighbor probabilities provide a fine-scale 
measure of adjacency patterns and the directionality of individual cover 
types. Nearest neighbor probabilities also reflect the degree of fragmentation 
in the landscape and, indirectly, the complexity of patch boundaries. The 
contagion index measures the dissection or clumping in the spatial pattern, 
but does not identify the factors causing the pattern. Edge calculations 
provide the amount of interface between different categories, but they are 
not sensitive to specific spatial arrangements. Spatial predictability measures 
the degree of departure from a random pattern and identifies periodicities in 
spatial patterns at different scales. First-order spatial adjacency predictabil- 
ity and the contagion index are highly correlated (r 2 = 0.99), but predictabil- 
ity may be easier to interpret because it is scaled on the range (0, 1). 

The multiple resolution fitting method compares spatial data on a cell by 
cell basis, but it is not sensitive to qualitative differences between spatial 
patterns. It may be particularly useful when the patterns are only slightly 
different, and if the patterns are properly registered. An advantage of the 
multiple resolution measure is its sensitivity to a periodic patterns or clusters 
and its lack of sensitivity to pattern complexity. The method can be used if 
simulating the actual location of categorical data is important. However, 
because of its insensitivity to qualitative aspects of the pattern (e.g., clumped 
versus dissected, complex versus simple), another indicator of spatial pattern 
might be used to supplement multiple resolution fitting if these aspects of 
the pattern are important. 

Additional characteristics must be considered when selecting a method 
for comparing simulated and actual spatial patterns. The matrices should be 
of the same dimensions, because matrix size has been shown to affect the 
number, size, and shape (as measured by the fractal dimension) of clusters 
(Gardner et al., 1987). The grid cells should also be of the same resolution, 
or grain size, as pattern measures have been shown to vary with scale 
(Turner et al., in press). Data sets should contain the same number of data 
categories if indices based on information theory (e.g., contagion, spatial 
predictability) are to be used. Matrices must also be properly registered to 
obtain valid results from the multiple resolution fitting method. Computa- 
tional considerations may also be important. For example, calculating 
fractal dimensions can require considerable computer memory and time with 
large matrices, because each patch in a matrix must be located and its area 
and perimeter recorded. In contrast, adjacency, contagion, edges and pre- 
dictability can all be calculated on a single pass through the matrix. 
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The issue of significant (both statistically and ecologically) changes or 
differences in spatial patterns remains an important research topic. Statisti- 
cally significant differences in spatial data can be determined by a variety of 
techniques, and S. Turner et al. (in press) have recently reviewed many of 
the available methods. However, slight differences or changes in spatial 
patterns may result in substantial alterations in ecological processes, but this 
aspect is not well known. The existence of thresholds in spatial patterns 
(Gardner et al., 1987; Turner et al., 1989) may be quite important in 
governing whether or not a change in pattern results in qualitatively differ- 
ent system behavior. It also remains necessary to determine the ecological 
significance of differences in broad-scale pattern indices (e.g., contagion, 
fractal dimension, predictability). Additional research is required to eluci- 
date these topics. 

The methods we have presented are useful for examining the goodness-of- 
fit between spatial simulations and data. The selection of appropriate 
methods will depend on specific modeling objectives and on the attributes of 
the data. Additional research in pattern analysis and comparison should 
improve the evaluation of landscape models, and therefore enhance our 
ability to simulate broad-scale phenomena, characterize spatial patterns, and 
ultimately manage natural resources at the landscape level. 
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