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ABSTRACT 

Maxwell, T. and Costanza, R., 1993. An approach to modelling the dynamics of evolutionary 
self-organization. Ecol. Modelling, 69: 149-161. 

We have simulated the dynamics of species evolution in a systems context on a parallel 
supercomputer. Population dynamics are represented as generalized Lotka-Volterra sys- 
tems defined as points in a generalized phenotype or character space T. Populations which 
are closest in T compete most strongly for resources. A variety of systems with varying 
assumptions, resource distributions, and number of trophic levels were simulated. Starting 
with a random initial seed proceeding through a complex temporal sequence, most cases 
converged to essentially the same configuration. The final equilibrium state consisted of a 
gridwork of localized population clusters in T, representing individual species. The inter- 
cluster spacing was roughly equal to the standard deviation of the resource utilization 
function. Thus the systems self-organize to an array of niches which maximally fills the 
available volume of resource space while minimizing the overlap of resource utilization 
functions. 

The simulations were performed on a Connection Machine (a massively parallel super- 
computer) which allowed up to 32000 distinct points in character space to be modelled in 
parallel. Simulation allows a more realistic treatment of evolutionary dynamics and greater 
flexibility in experimental manipulation than previous analytical approaches. 

We experimented with temporal variations in the resource base. In most cases the niche 
structure was not affected; species prospered or declined as a function of local resource 
availability but the niche pattern remained invariant. However, in the case in which each 
species depends on only one or two resources, increasing randomness in the resource base 
resulted in a decrease in the number of species. 
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INTRODUCTION 

Our purpose in this experiment was to increase our understanding of 
evolutionary self-organization in communities of species by studying of the 
dynamics of relatively simple systems. We have at tempted to choose a 
system which is complex enough to capture some of the principal features 
of systems level evolution, while remaining simple enough to foster insight 
into its dynamics. We proceed in the spirit of recent findings in nonlinear 
dynamics (Grebogi et al., 1987), which have demonstrated that very simple 
systems can produce very complex behavior and exhibit universal proper- 
ties in common with much more complicated systems. Whereas previous 
approaches (MacArthur and Levins, 1967; MacArthur,  1969, 1972; May 
and MacArthur,  1972; May, 1974; Roughgarden,  1976) have emphasized 
analytical analysis of simple systems, this complementary approach empha- 
sizes experimental exploration of system dynamics as simulated on 
(super)computers. The experimental approach allows greater depth in the 
treatment of evolutionary dynamics and greater flexibility in experimental 
manipulation than previous analytical approaches. We seek to shed some 
light on the questions: Why are there discrete species? What factors 
determine the number of species that can coexist in a community? What 
are the processes which drive speciation and determine the "width" of 
species in trait space? 

To address these questions we define a resource space R whose axes 
represent continuously varying characteristics of the available resource 
base such as food size, location, composition, etc. We also assume a space 
of species T (defined more rigorously in the next section) indexed by the 
variable i. The ability of a species i to utilize resources with a given set of 
properties x ~ R is characterized by a resource utilization function f~.(x) 
defined on R. These functions are peaked at the species' preferred 
resource type x 0 ~ R and decrease rapidly with distance from x 0 in R. The 
"width" of the utilization function fi(x) is represented by the function's 
standard deviation F/. In this paper we will consider an organism's realized 
"niche" to be coextensive with its resource utilization function. 

Within this framework we can discuss the species packing problem in 
terms of the "competitive exclusion principle". Many mathematical models 
have been developed (MacArthur and Levins, 1967; MacArthur, 1969, 
1972; May and MacArthur, 1973; May, 1974; Roughgarden,  1976) to derive 
a "limiting similarity" among competing species which disallows the coexis- 
tence (within an equilibrium community) of different species which utilize 
the same resources. One class of models (May and MacArthur, 1972) starts 
with the ecological models of Volterra (1926) and Lotka (1925) and 
introduces evolutionary factors by treating the ecological constants as 
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evolutionary variables. These models assume that communities are com- 
posed of a set of species which differ by the minimum possible amount,  and 
then proceed to derive the amount  of niche overlap which is consistent 
with stability at equilibrium. Another  approach (Roughgarden, 1972) starts 
with the equations of theoretical population genetics, and introduces 
evolutionary factors by treating relative fitnesses as varying in space or with 
population density. These models differ in assumptions and stability crite- 
ria, but all lead to essentially the same conclusion: species packing reaches 
a limiting value roughly equal to the width of the resource utilization 
function. 

These models raise the questions: Do species in communities actually 
differ by the minimum possible amount? What mechanism would generate 
such a configuration? The mechanism suggested by May and McArthur 
(1972) is invasion coupled with extinction; however, according to Roughgar- 
den (1976), evidence for this theory seems lacking. Roughgarden (1976) 
proposes the alternate theory that resource partitioning among competing 
species is an evolutionary compromise between the competing pressures of 
character displacement and the inherent cost of any shift in resource 
utilization. His coevolution models postulate an initial configuration com- 
posed of nonzero populations for every possible phenotype (i.e., point in 
phenotype space) and then utilize the Lotka-Vol terra  competition equa- 
tions to derive the final equilibrium state. The model version which is 
closest to the models presented here predicts a stable equilibrium in which 
the convolution of the population distribution (defined below) is equal to 
the resource distribution, allowing unlimited species packing. (This result is 
also obtained in our models in the special case of zero death rate a n d / o r  
geometric resource utilization functions.) 

These earlier models focussed on systems that were simple enough to be 
explored analytically. The final attractors of the proposed systems were 
solved for mathematically, but the dynamics of the systems were ignored. 
These models therefore fail to illuminate the evolut ionary/populat ion 
dynamic mechanisms which lead to a community composed of a certain 
number  of discrete species. They are also inapplicable to systems which are 
too complicated to explore analytically, and to non-equilibrium systems 
which never settle into a stable attractor. We have at tempted to address 
these limitations by developing computational evolutionary models of pop- 
ulation dynamics which include the dynamics of mutation in phenotype 
space. 

Initial work in this direction has been done by Allen and McGlade 
(1987), but has been limited by insufficient computational resources. In this 
paper we present a general approach to modelling the coevolutionary 
dynamics of communities which utilizes massively parallel computation. 
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This simulation-based approach is applicable to a wide range of systems, 
including those whose attractors cannot be found analytically. It allows us 
to follow the dynamics of the system in trait space as it self-organizes into a 
community of species. Deeper  understanding of these dynamics will allow 
us to better predict the response of the system to parameter  changes and 
dynamic perturbations. 

A FORMAL FRAMEWORK FOR DESCRIBING EVOLVING SYSTEMS 

We begin by developing a generalization of the resource space flame- 
work appropriate for describing evolving systems. This formalism is general 
enough to describe a wide range of evolutionary processes involving muta- 
tion, competition, and selection, but here we will focus on community 
evolution. Consider an Nr-dimensional  phenotype space T, also known as 
"trait space" or "character space" (Allen and McGlade, 1987). Each point 
of T will represent a set of morphologies, strategies, or characteristics. For 
example, the components of T might represent speed, size, reproduction 
rate, prey-finding and predator-avoiding strategies, geographic location, or 
habitat height in a rain forest. Alternately, they might represent the spatial 
and temporal scales which characterize the organism. 

The population density at a point i = {i1,i2 . . . . .  iNT} in T will be denoted 
as N ( i ) .  Thus N ( i )  is proportional to the number  of organisms which share 
the set of characteristics associated with i. A species will be represented as 
a localized "clump" of individuals in T. If reproduction is perfect (the 
mutation rate r m = 0) ,  the population dynamics proceeds independently at 
each point in T; mutation introduces dynamic mixing and coupling among 
the various points of T. As a first approximation, we make the following 
simplifying assumptions: 
(1) Reproduction in T, whether  sexual or asexual, produces a fraction r s of 

offspring in the same cell in T as the parents and a fraction r m of 
mutated offspring which populate neighboring cells in T. 

(2) Mutations produce offspring which are no farther than one cell from 
one of the parents in T. 

With these assumptions, evolutionary processes can be modelled as a 
diffusive population flow in T. To this end we define r s to be the 
self-reproduction rate and r m t o  be the mutation rate. Then the population 
N ( i )  will reproduce itself at the rate r s N ( i )  and contribute to the popula- 
tions at neighboring points i + j  in T at the rate r m N ( i  + j ) .  Thus the 
dynamics of reproduction in character space can be described by the 
equation 

B ( N )  = r ~ U ( i )  + rm~-~lJl=lU(i + j )  (1) 
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where  i + j  ranges over the neighbors of i in the sum over j ,  I J l  denotes 
the magnitude of j ,  and B(N) represents the initial population distribution 
at the next t imestep (generation). The parameter  values used in the 
simulation described below are r s = 1.0 and r m = 0.2. Thus if the selection 
pressures are homogeneous ( independent  of i), a population initially 
concentra ted at point i 0 in T will spread out over time and evolve toward a 
uniform distribution. 

A MODEL OF EVOLUTION IN A COMMUNITY OF SPECIES 

To describe the evolution of a community of species, we must add 
selection pressures to the reproduction dynamics described above. We 
define a resource space R such that point i in R represents the character-  
istics of the resources which support the population at point i in T. For 
example, if point i in T represents  the time and space scales characteristic 
of a population of organisms, then point i in R represents  the time and 
space scales characteristic of  the resources that support the population. We 
denote  the resource density at point i in R as K(i). We postulate that the 
ability of a population at point i to utilize resources at j decreases as 
l i - j l  (the distance between points i and j in T or R) increases, and that 

populations which are nearest  in T compete  most strongly for resources, 
such that the magnitude of the competit ion diminishes as the separation in 
T increases. In order  to incorporate these properties into our model, we 
postulate that the intensity of competit ion between populations at point 
i + j  in T and point i in T is proportional to gr(IJl), a decreasing 
function of I j l .  We have exper imented with four gr(li l) functions: the 
constant function gr( I i l) = go, a power function gr(i) = e x p ( - g 0  I i I /F) ,  
a quadratic function with a sharp cutoff, and a gaussian distribution. The 
quadratic function is given by 

g r ( l i l )  = 1 - g o l i l a r  e if Iil  < F ,  

0 if Iil  >F,  

where  F is the maximum range of competit ion and typically go = 0.75. The 
gaussian function is given by 

g r ( [ i  l) = e x p ( - g 0  Ii I z / r  2) 

where  typically go = 1.3 and F = 5. The results obtained for the different 
gr functions are discussed below. 

The total population pressure at a point i in T can now be represented 
as a sum over all neighboring populations within competitive range F of i, 
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modulated by the competition decay factor g, yielding a convolution term 

C(F,  N)  = E I j l < r g r (  I j l )N( i  +j) (2) 

This convolution is a local weighted average over N, i.e. it can be imagined 
visually as a "blurred" version of the population distribution N. 

We next postulate that the utilization rate of resources at point i + j  in 
R by a population at point i in T is proportional to the same gr( I J I) with 
possibly a different range F'. This postulate is based on the assumption 
that the population at point i in T is maximally adapted to utilize 
resources at point i in R, and its ability to utilize resources at point j in R 
decreases as the distance between i and j increases. The available re- 
sources at point i can then be expressed as a similar convolution term: 

C(F ' ,  N)  = Y"lJl <r,gv'( I J I ) g ( i  + j )  (3) 

This convolution is a local weighted average over K, i.e. it can be imagined 
visually as a "blurred" version of the resource distribution K. The precise 
form of this equation is somewhat arbitrary; many variations will lead to 
essentially the same final result. In a constant resource environment, the 
model is also fairly insensitive to the value of F', i.e. F ' =  1 and F ' =  F 
generate the same dynamics provided K does not vary drastically over 
range F. In a highly fluctuating environment, however, the generalists 
(relatively high F') have an advantage over the specialists (relatively low 
F'), and the model then becomes more sensitive to the value chosen for F'. 
Simulation results are discussed below. 

We now model the evolutionary dynamics of N(i) via a generalized 
Lotka-Volterra  system with a saturation term proportional to the ratio of 
population pressure to available resources: 

IV(i) = - a N ( i )  +B(N, i) 1 C(F ' ,  K) (4) 

where a is a death rate, B(N) is a generalized birth rate given by Eq. 1, 
and the dot represents time differentiation. The choice of C(F,K) rather 
than K(i) in this equation is somewhat arbitrary, both forms lead to 
essentially the same results in most cases. 

SIMULATING COMMUNITY EVOLUTION 

We simulated the system described above on a CM with one processor 
assigned to each point in a two-dimensional phenotype space T. The initial 
state consisted of a single population concentrated at a single point in T. 
This population produces mutants which spread like a wave across T (Fig. 
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Fig. 1. Evolut ionary  dynamics s tar t ing f rom an  initial seed popula t ion  and  self-organizing to 
form an  array of niches  in t rai t  space. 

1). The population at each point in T increases until the carrying capacity 
K(i) is approached, limiting further growth. At this point the effect of 
competition is seen. The system begins a self-organization process which 
culminates in one of two possible equilibrium distributions (or "attractors"). 

The most common attractor is the latticework of "niches" as shown in 
Fig. 1 at time = 140. This final population distribution is largely indepen- 
dent of the initial starting configuration, and was observed with the 
constant, quadratic, and gaussian resource distribution functions. Popula- 
tions are concentrated at points which form a two dimensional array, with 
the spacing between points equal to F, the competition range. Thus each 
population dominates a cube in T of size (edge-length) F, such that no 
mutant  population can grow within the cube. The resources drawn from 
this cube support the population at its center, and invaders are competi- 
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tively excluded. The populations arrange themselves in clusters which 
maximally fill the available resource space, subject to the constraint that 
each cluster lie outside of the competition range of all the others. When 
clusters form that are separated from all other populations by a region of 
zero populations, we consider each cluster to be a different species. Thus 
we witness the dynamics of the evolution and self-organization of a commu- 
nity of species from a single seed species. 

For certain special cases, the system converges to a smoothly varying 
attractor, such that the final population distribution N(i) approximates the 
resource distribution R(i). This result is obtained for rapidly decaying 
resource utilization functions (i.e. g(i)= e x p ( - g  0 l i l / T )  or very small 
death rate (a  = 0). Very close packing is allowed in this configuration; 
quantization into discrete species does not occur; the entire resource space 
becomes one continuous niche. The models of May and MacArthur (1972) 
and Roughgarden (1976) converge to similar attractors for the case of 
geometric resource utilization functions. 

EFFECTS OF RESOURCE VARIATION 

We have experimented with many forms for the resource distribution 
K(i), including both stochastic and deterministic spatio-temporally varying 
distributions, and a resource depletion model described by the equation 

/~(I)  = R0(Keq(i ) - K(i)) - RIC(F, N) (5) 

where  Keq(i) is the equilibrium resource distribution, R 0 and R 1 are 
parameters, and C(F,N) is the convolution term described above. The 
general lattice structure described above seems to be insensitive to the 
form and dynamics of K(i), however the size of the populations at each of 
the lattice points does depend on the availability of local resources. Thus 
the form of the lattice remains invariant under resource fluctuations, but 
the size of the populations at the lattice points will fluctuate in response to 
the variations in available resources. In some cases the resource fluctua- 
tions will cause an extinction, leaving a gap in the lattice structure. Species 
with small values of F' (i.e. specialists) are particularly vulnerable to 
extinction due to stochasticity in the resource distribution; this case is 
described in detail below. 

EFFECT OF PREDATORS 

We added another trophic level to the model community by introducing 
predators. The predator dynamics will have the same general form as the 
prey dynamics, except that N is now considered a resource for P, so that 
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the population pressure term is proportional to the ratio of the nearby 
predator population density to the nearby prey population density. The 
parameters F N and F e will represent the prey and predator competition 
ranges respectively. The set of equations describing the system is now 

~r(i) = - a N N ( i )  + B(N, i) 1 - c N  C(I ' ) ,  K) - Pred(e ,  N)  (6a) 

[ c(rp, e)] 
t5(i) = - a e P (  i ) + B( P, i) - c e C(Fe ' N)  (6b) 

c(r , v) 
Pred(P,  N) =pa N + (6c) 

( P z + N )  

B ( N )  = rsU(i ) + rm Y'~ljl=lU(i +j)  (6d) 

B ( N )  = rsP(i ) + FmEijq=lP(i q-j) (6e) 

C(FN, N ) =  ~-~ljl<rNgrN( l J l )N ( i  +j)  (6f) 

with similar equations for the other convolution terms. Typical parameter 
values are Pl = 0.02, P 2  = 5 ,  Cp = 0 . 2 ,  C N ---- 0 . 2 ,  a N ---- 0 . 1 ,  a p  = 0 . 1 ,  r s = 1.0, 
r,,, = 0.2. 

We simulated this system on a CM, using Euler's method. In this case 
both N and P form population lattices. The herbivore (N) populations 
converge to a grid of niches (as described above) with spacing F u. Thus the 
herbivore lattice is essentially unchanged by the addition of predators, 
except for a reduction in population sizes. The predator populations 
converge to a lattice which represents a compromise between the opposing 
pressures to (1) maximize P-N overlap, and (2) form a lattice with spacing 
Fp. We experimented with a number of variations of the model in Eqs. 6; 
and found that this dynamic attractor seems to be very robust to changes in 
the parameters and in the structure of the model. 

S T A B I L I T Y - C O M P L E X I T Y  I N V E S T I G A T I O N S  

The relationship between stability and diversity has been long debated 
by ecologists (May, 1973). We have utilized the evolutionary models dis- 
cussed above to investigate the hypothesis that high (low) environmental 
predictability leads to high (low) community diversity. Although precise 
definitions of predictability exist (Colwell, 1974), for the purposes of these 
investigations we simply equate decreasing predictability with increasing 
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fractional resource variation Rf (defined below). We used a stochastic 
resource distribution function given by 

K(i)=Ko(i)+r(i) (7) 

where K(i) is the deterministic component of the resource distribution, 
and r(i) is a set of independent random variables with amplitude R. The 
fractional resource variation is given by Rf= R/gmax, where gma x is the 
maximum value of K(i) at t = 0. The behavior of the model is strongly 
dependent on the value of F', the range of resources that can be utilized 
by the species. For F' = 0 (i.e. CVN(F' ,K) = K(i)) the number of species 
drops from 50 to 38 as Rf varies from 0 to 0.5 (with no mutations). 
Including mutations in the model tends to buffer the impact of the 
environmental stochasticity, since areas of trait space that have been 
vacated by extinction can be repopulated by mutants. For F' = 7, however, 
the number of species remains invariant as Rf varies. A species that 
averages over a number of resources that vary independently is more stable 
than a species that depends on a single resource that varies with the same 
degree of stochasticity. Thus we conclude that in this model increasing 
(decreasing) resource predictability leads to increasing (decreasing) diver- 
sity if: (1) the scale of the resource variation is comparable to (or larger 
than) the range of resources that can be utilized by the species in the 
community, (2) the rate of speciation/colonization is smaller than the 
extinction rate due to environmental stochasticity. 

COMPARISON WITH FOOD WEB DATA 

These simulation experiments have generated a simulated food web. We 
now compare the results of these simulations with data gathered from 
natural food webs. An immense collection of these data has been summa- 
rized by Cohen (1990) into a set of invariants. These invariants have been 
expressed in terms of five laws: 
(1) Cycles are rare. 
(2) Chains are short. 
(3) The proportions of top, intermediate, and basal species remains invari- 

ant. 
(4) The proportion of basal to intermediate links is invariant. 
(5) The ratio of links to species is invariant. 
The first two laws are built into our simulations. Our results are consistent 
with the third law, with the ratio of the number of predator species to the 
number of prey species equal to 1.00. The data on natural systems yield a 
value of 0.9 for this ratio. 
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The fourth law holds exactly, since the number  of basal- intermediate  
links is proportional to the number  of in termedia te- top  links with a 
proportionality constant of 1.0. 

In accordance with the fifth law we find that the ratio of the number  of 
links to the number of species is scale invariant. Data on natural systems 
yield a constant of proportionality of 1.8. Calculating this constant for our 
simulated web is problematic, because the number  of links is not well 
defined, due to the presence of many weak, long-distance interactions. If 
only direct and nearest neighbor links are counted, with nearest neighbor 
links weighted 0.5 as compared to the much stronger links between species 
that are directly aligned in trait space, we derive a proportionality constant 
of 1.75, in close agreement with data from natural systems. 

In conclusion, the simulated food webs seem to be consistent with the 
existing data from natural food webs. It is of interest for further investiga- 
tions to compare the pattern of strengths of links to natural system data. In 
our simulated system, each intermediate and top level species had one 
strong link and several much weaker links to the level below. Data from 
natural systems (Baird and Ulanowicz, 1989) indicate that the pattern of 
link strengths is highly variable both seasonally and between different 
species, reflecting complexities that have not yet been incorporated into 
our models. 

DISCUSSION AND CONCLUSIONS 

This simulation illustrates the process of community formation. We have 
observed a single species bifurcate into many species which pack the 
available resource space, self-organizing to form an array of niches. The 
processes of mutation and selection are adequate to generate a community 
composed of discrete species separated by the minimum possible distance 
in phenotype space. The quantization of species and self-organization of 
the ecosystem are driven by a dynamic balance between inter-specific and 
intra-specific competition. The mutation process combined with intra- 
specific competition produces a drive to expand in T, generating adaptive 
radiation. Inter-specific competition produces a repulsive force between 
species in T, generating quantization of species. 

We see that populations are not adapting to a set of preformed niches; 
rather the niche structure emerges through a process of self-organization 
which involves the entire system. Although the dynamics are driven by local 
processes (reproduction and competition among neighbors), the final con- 
figuration is a reflection of the global structure of the resource space. 
Varying the initial conditions may affect the exact placement of the niches, 
but has little effect on the global structure that emerges. 
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Ecosystem theorists have often debated whether ecosystem stability and 
structure can be understood in terms of a simple Darwinian struggle for 
existence (Okasen, 1988) or whether  cybernetic or other global ordering 
principles (Patten and Odum, 1981) are also needed. In the simulations 
presented here, global order and stability are seen to emerge from the local 
dynamics of mutat ion and competition in the context of global rules and 
constraints governing the system. Admittedly, these simulations are only a 
dim reflection of the awesome complexity of natural ecosystems. While 
they do not provide definitive answers to these long-standing questions, we 
feel that the general approach has promise and will lead to a better 
understanding of the subtle interplay between local behavior and global 
constraints. We now have the computational resources to allow much more 
realistic simulations. Future  work should allow us to carry out more 
detailed experiments on the dynamics of evolutionary self-organization. 
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