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Abstract

Weanalyzed the relationship between resol ution and predi ctability and found that whileincreasing resol ution
provides more descriptiveinformation about the patternsin data, it also increasesthe difficulty of accurately
modeling those patterns. There are limitsto the predictability of natural phenomenon at particular resolu-
tions, and **fractal-like'* rules determine how both **data’* and **mode*" predictability change with reso-
[ution.

Weanalyzed land use data by resampling map data setsat severa different spatial resol utionsand measur-
ing predictability at each. Spatial auto-predictability (P,) isthe reduction in uncertainty about the state of
apixel in ascenegiven knowledgeof thestate of adjacent pixelsin that scene, and spatial cross-predictability
(P,) isthe reduction in uncertainty about the state of a pixel in a scene given knowledgeof the state of cor-
responding pixelsin other scenes. P, isa measure of the internal pattern in the data while P, is a measure
of the ability of some other ""model** to represent that pattern.

We found a strong linear relationship between the log of P, and the log of resolution (measured as the
number of pixels per square kilometer). This fractal-like characteristic of ** self-similarity** with decreasing
resolution impliesthat predictability may be best described using a unitless dimension that summarizes how
it changes with resolution. While P, generally increases with increasing resolution (because more informa-
tion is being included), P_ generally falls or remains stable (becauseit is easier to model aggregate results
than fine grain ones). Thus one can define an ** optimal** resolution for a particular modeling problem that
balances the benefit in terms of increasing data predictability (P,) as one'increases resolution, with the cost
of decreasing mode! predictability (P ).

models at increasingly finer resolution. For exam-
ple, the position and velocity of individual mole-
culesin a gasis highly unpredictable, but the tem-

Introduction

We hypothesized that an important determinant of

the predictability of phenomenon isthe scale (reso-
[ution and extent) of the analysis. By resolution we
mean " grainsize™* or thesizeof thesmallest unit of
measure, with increasing resolution corresponding
to fine grain. We can distinguish at least two ways
that resolution might affect predictability. One is
the increasing difficulty of building predictive

perature of the gas (which is an average of these
motions at a much cruder resolution) is highly pre-
dictable. Likewise, it is easier to predict general
climate patterns than it is to predict the exact
geographic location and timing of rainstorms (the
weather).

On the other hand, finer resolution allows more
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centuries, By 1953, the expanding US middle class
and post-war economic boom had led to significant
urban and agricultural development. This develop-
ment accelerated into the 70s and 80s.

For the predictability analysis we used versions
of the land use maps that had been manually digi-
tized into 128 acre (0.52 km?) rectangular cells,
each 625 m by 833 m (Costanza 1979). This pro-
duced an array with overall dimensions of 576 rows
by 400 columns (230,400 total cells) of which about
93,000 were inside the study area. Each cell was
assigned one of 26 land use categories ranging from
natural to agricultural to urban systems (Costanza
1979).
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Fig, I. South Florida land use data for A) 1900, B) 1953, and C)
1973 (from Costanza (1975)).

State of Maryland

The Maryland Department of State Planning has
compiled digitized land use data (using 80 acre cells)
for three different years (1973, 1981, and 1985) for
the entire state, using 20 different land use cate-
gories. While there were significant shifts in land
use in Maryland, land use had changed much less
dramatically in this area over the 22-year interval
between 1973 and 1985 than it had in South Florida
during the 1900 to 1973 interval. Major changes in-
volved reforestation of agricultural areas and sig-
nificant increases in urban land uses, especially in
the Washington/Baltimore corridor. For the state
of Maryland we used a rectangular array of 345
rows by 640 columns or a total of 220,800 cells, of
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detail to be observed and internal patterns in the
data to be seenthat may not have been observed at
cruder resolutions. One example is the warm core
gyresthat formin the Gulf Stream that were not ob-
served until remote sensing images including the
proper thermal bands and of sufficiently fine reso-
lution were available. Another exampleis the quest
by the military to obtain high enough resolution
satellite images to see the features (such as tanks
and airplanes) of interest to them that would not
appear on lower resolution images.

Some phenomenon are known to vary in a regu-
lar way with resolution. For example, the regular
relationship between the measured length of a
coastline and the resolution at which it is measured
is a fundamental one behind the concept of fractals
(Mandelbrot 1977) and can be summarized in the
following equation:

L = ks1-D ¢))
where:

L = the length of the coastline or other “fractal”
boundary

s = the size of the fundamental unit of measure or
the resolution of the measurement

k = a scaling constant

D = the fractal dimension

This convenient “scaling rule” has proved to be
very useful in describing many kinds of complex
boundaries and behaviors (Mandelbrot 1983, Milne
1988, Turner et al. 1987, 1989, Olsen and Schaffer
1990, Sugihara and May 1990). We hypothesized
that this same kind of relationship might exist be-
tween resolution and predictability (and possibly
other measures as well) and might be useful for
developing scaling rules for understanding and
modeling. We tested this hypothesis by calculating
both data and model predictability for a number of
landscapes at a number of different resolutions.

Measurement of predictability

Colwell (1974) applied information theoretic con-
cepts to the problem of estimating the degree of
predictability of periodic phenomena. The method

is similar to autocorrelation analysis except that it
is applicable to both interval and categorical data
and may thus be more appropriate, for example,
for comparing patterns of land cover. Predictabili-
ty in this context refers to the reduction in uncer-
tainty about one variable that can be gained by
knowledge of another. For example, if the seasonal
rainfall pattern in an area is predictable (e.g., there
is always a severe dry summer), then knowing the
time of year provides information about rainfall (if
it’s summer, it must be dry). If there is no relation-
ship between rainfall and season, time of year tells
us little and the rainfall is relatively unpredictable
from a knowledge of time of year.

These techniques can also be applied to spatial
data (Turner et al. 1989). In this application, one is
interested in the degree to which the uncertainty
about the category of a particular pixel is reduced
from knowledge of other aspects of the same scene,
or from knowledge of aspects of other, related
scenes. There are several aspects of a scene that
might be used as predictors. We discuss two im-
plementations based on (1) the state of adjacent
pixels in the same scene (“auto-predictability” or
P,); and (2) the state of corresponding pixels in
other, related scenes (“cross predictability” or P ).
Other combinations of these two and higher level
analyses (i.e., adjacent pixel pairs, triplets, etc., or
multiple cross comparisons) are also possible and
useful for various purposes (Turner et al. 1989).

The method in general can determine if there are
regularities in a spatial data set, ranked on a scale
from O (totally unpredictable) to 1 (totally predict-
able), and the answer can be interpreted as the
degree of departure of the scene or comparison be-
tween scenes from a random (totally unpredictable)
pattern.

To estimate predictability, one first assembles a
contingency matrix with states or conditions of the
pixels along the left axis, and corresponding states
of other pixels along the top. For auto-predicta-
bility the categories in a map are listed on the left
and along the top of a matrix. The numbers in the
matrices represent the frequency of occurrence in
the mapped data of the category (or category pair,
triplet, etc. for higher level analysis) listed along the



top of the matrix lying adjacent to the category
listed along the left. This yields information about
how predictable the patterns of adjacency are in the
sample map data.

The contingency matrix can be any set of
meaningful spatial relationships in the data. For
example, another way of setting up the matrix isto
define the predictability of one scene given another
scene. For example, we might want to know the
predictability of a landscape in one year given in-
formation in some previous year(s), or we might
want to know the predictability of a real landscape
compared to a landscape model’s output. We call
this the “‘cross’” predictability, because it provides
information on the predictability of a given pixel’s
category given knowledge of the category of the
corresponding pixel in another scene.

Following Colwell (1974) we define Nij to be the
elements in the contingency matrix (i.e., the num-
ber of timesin the data that a pixel of categoryi was
adjacent to one of category j for auto-predictability
analysis). Define X; as the column totals, Y; as the
row totals, and Z as the grand total, or:
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Then the uncertainty with respect to X is:
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and the uncertainty with respect to the interaction
of X and Y is:
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Then define the conditional uncertainty with regard
to Y with X given as:

H, (Y) = H(XY) - H(X) (8)

Finally, define a measure of predictability (P) with
the range (0,1) as:

_H(Y) H(XY) — H(X)

P=1 -
log s log s

®
where s is the total number of rows (categories)-in
the contingency matrix.

This measure gives an index scaled on the range
from O (unpredictable or maximum uncertainty) to
1 (totally predictable or minimum uncertainty).
Predictability will be minimal when all the elements
in the contingency matrix (N;; are equiprobable
(i.e., when all entries are the same), and will be
maximized when only one entry in each column is
non-zero. Most real spatial data will fall between
these extremes.

Study areas

We applied these indices of predictability to land
use data sets from the Kissimmee/Everglades Ba-
sin, Florida and the state of Maryland. Both of
these data sets contained three distinct years of data
over which significant changes in land use patterns
had occurred.

Kissimmee/Everglades Basin, Florida

TheKissimmee/Everglades drainage basin in South
Florida represents one of the most rapidly changing
and intensively modified landscapes in the country.
It consists of some 18,700 square miles (48,500
km?) of land and water (Fig. 1) covering about 1/4
of the state of Florida. A set of three land use maps
with 26 land use categories were prepared for the
years 1900, 1953, and 1973in order to analyze the
dramatic changes that had occurred in the region
during this interval (Costanza 1975,1979). In 1900,
when much of the United States had already been
developedinto farmland and cities, the Kissimmee/
Everglades basin remained much as it had been for
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centuries, By 1953, the expanding US middle class
and post-war economic boom had led to significant
urban and agricultural development. This develop-
ment accelerated into the 70s and 80s.

For the predictability analysis we used versions
of the land use maps that had been manually digi-
tized into 128 acre (0.52 km?) rectangular cells,
each 625 m by 833 m (Costanza 1979). This pro-
duced an array with overall dimensions of 576 rows
by 400 columns (230,400 total cells) of which about
93,000 were inside the study area. Each cell was
assigned one of 26 land use categories ranging from
natural to agricultural to urban systems (Costanza
1979).
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Fig, I. South Florida land use data for A) 1900, B) 1953, and C)
1973 (from Costanza (1975)).

State of Maryland

The Maryland Department of State Planning has
compiled digitized land use data (using 80 acre cells)
for three different years (1973, 1981, and 1985) for
the entire state, using 20 different land use cate-
gories. While there were significant shifts in land
use in Maryland, land use had changed much less
dramatically in this area over the 22-year interval
between 1973 and 1985 than it had in South Florida
during the 1900 to 1973 interval. Major changes in-
volved reforestation of agricultural areas and sig-
nificant increases in urban land uses, especially in
the Washington/Baltimore corridor. For the state
of Maryland we used a rectangular array of 345
rows by 640 columns or a total of 220,800 cells, of
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which approximately 68,800 were within the boun-
daries of the state.

Software and algorithms

Land use data from the two study sites was import-
ed into Map II™, a simple and easy to use raster-
based GIS package for the Macintosh, to prepare
data files for calculations using high speed parallel
transputers, as discussed below. Any GIS system
capable of producing raster output would be suit-
able, however.

Decreasing the resolution (increasing the grain)
of a spatial data set involves the repetitive resam-
pling of a specified number of small cells into larger
cells. Analytically, this is accomplished by moving
a resampling matrix (whose size is the number of
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rows and columns of the original data needed to
make a single cell in the new raster) through the
original raster. The cell values falling within the
resampling matrix are tabulated and used to deter-
mine the value of the appropriate larger cell in the
new, coarser resolution raster. We experimented
with several methods of resampling or aggregating
the spatial data. The first method, which we call
proportional aggregation, assigns the cell values in
the coarser grain raster according to the most domi-
nant category found within the resampling matrix.
A second method, termed random aggregation, as-
signs new categories by randomly choosing from
the categories found within the resampling matrix.
The major difference between the two methods is
that rare categories are more likely to be preserved
when the data are resampled with the random
aggregation scheme. While the choice of aggrega-
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Fig. 2. Example of the random, sequential aggregation scheme
applied to the 1973 South Florida data four successive times.
These four aggregations, along with the original, make up the
five different resolutions used in the analyses. The resolutions
used for the Florida site were 1.333 (original), 0.333 (A), 0.083
(B), 0.021 (C), and 0.005 (D) cells/km?,

tion scheme can be significant in many spatial ana-
lyses, we found that the aggregation scheme made
little difference to the results of our particular ex-
periments. We settled on a version of the random
aggregation scheme that is both simple and suits
our immediate needs. In this version aggregation
takes place in steps. In each step the original map
is aggregated using a 2 x 2 resampling matrix, yield-
ing an aggregated map with 1/4 the number of cells
of the original. In each 2 x 2 resampling matrix we
choose the category of the northwest cell as the
category for the cell in the aggregate map. This pro-
cess was repeated on the new aggregate map to yield
a series of maps each with 1/4 the total number of

Fig. 2B.

cells of the one preceding it in the series. Figure 2
shows the results of this process for the South Flori-
da, 1973 data set. Each map in this series has 1/4
the resolution of the preceding map. For the Flori-
da maps the resulting resolutions (in cells/km?)
were 1.333 (original), 0.333, 0.083, 0.021, and
0.005. For the Maryland maps the resulting resolu-
tions (in cells/km?) were 2.743 (original), 0.686,
0.171, 0.043, and 0.011.

We developed algorithms in a parallel version of
the C programming language to calculate auto and
cross-predictability for mapped data on Inmos
Transputers (a form of RISC based parallel proces-
sor) on a Macintosh (Costanza and Maxwell 1991).
Transputers are extremely fast for this sort of calcu-
lation. For example, for the South Florida data (a
576 x 400 array) calculation of auto-predictability
and printing results to a text file took approximate-
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ly 2.4 seconds using a Macintosh IIci with 4 trans-
puters!.

Auto-predictability experiments

We calculated P, for both study areas for all three
years and at five different resolutions. We started
with the maximum resolution of the data and gra-
dually degraded it by aggregating pixels. In each
step we halved the resolution by aggregating 2 x 2

IThe algorithms also work on serial machines, only slower.
Each transputer is approximately the speed of a SUN Sparc sta-
tion so the 4 transputer time is about four times the speed one
would expect on a Sparc station. Contact Tom Maxwell for
more information about obtaining the algorithms or using trans-
puters for spatial analysis,

a3
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blocks of pixels at the previous resolution into
single pixels as described above. Resolution is fre-
quently indicated as the length of a side of a cell
(pixel), with higher or finer resolution corre-
sponding to smaller cell (pixel) sizes. For example,
LANDSAT satellite data has 30-meter resolution
while SPOT satellite data has finer resolution at 18
meters. In our plots we wanted higher resolution to
correspond to higher (not lower) numbers so we
measured resolution as the number of cells per
km?. For example, 50-meter cells would have a
resolution of 400 cells/km2, while 200-meter cells
would have a resolution of 25 cells/km?2.

We fit the equation:

P = kt4-Pp) )
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Table 1. Fractal auto-predictability dimension (given as 1-D,p, scale constant (k), adjusted R2, and degrees of freedom (df) for auto-
predictability (P,) from regression of equation 3 for both data sets. ** indicates significant at the 0.1 level, * indicates significant at

the .05 level.

Site Year k (1-Dap) adj R2 df
Kissimmee/Everglades, FL 1900 0.6364 0.111 .999%#* 4
Kissimmee/Everglades, FL 1953 0.6383 0.085 .988*#* 4
Kissimmee/Bverglades, FL 1973 0.6250 0.096 L981%* 4
Kissimmee/EBverglades, FL all years 0.6332 0.097 .958%* 14
State of Maryland 1973 0.5189 0.031 7180% 4
State of Maryland 1981 0.5046 0.034 780% 4
State of Maryland 1985 0.4956 0.030 .631* 4
State of Maryland all years 0.5434 0.031 T20%* 14

Table 2. Fractal cross-predictability dimension (stated as 1-Dcp, scale constant (k), adjusted R2, and degrees of freedom (df) from
regression of equation 3 for cross-predictability (P,) for both data sets. ** indicates significant at the 0.1 level, * indicates significant

at the .05 level.

Site Year k (1-Dcp) adj R2 df
Kissimmee/Everglades, FL 1900/1953 0.5764 -0.11 .943%* 4
Kissimmee/Everglades, FL 1953/1973 0.4936 -.017 J778% 4
State of Maryland 1973/1981 1.0790 -.006 .805* 4
State of Maryland 1981/1985 0.9296 —.004 777 4

where:

P = the spatial predictability (P, refers to auto-

predictability, P, refers to cross-predicta-

bility)

r = the resolution measured as the number of
cells/km?

k = ascaling factor

Dp = the fractal predictability dimension (dimen-

sionless)

by first transforming it into log-log form:
In @y = In (K + 1-Dp)in () 3)

and using standard linear regression analysis to
solve for the parameters k and D,

The results are summarized in Table 1, which in-
dicates the high R2 for this relationship for both of
the study sites.

Cross-predictability experiments

We calculated P, for both of the study areas by
comparing maps from different years. This is ana-

logous to a simple “null model” that predicts land
use patterns for one time from patterns at some
previous time or times. This “model” includes no
information on the underlying processes of change,
but we were interested in how changing the resolu-
tion of the maps affected the predictability, and the
“null model”” of no change is an interesting point
of reference. We fit equation 3 to the data and the
results for the three sites are shown in Table 2.
Results of both the auto and cross-predictability
experiments for both sites are plotted together on a
log-log scale in Fig. 3. The strong linearity of the
relationship for all cases is apparent, as is the fact
that auto-predictability (P,) increases with increas-
ing resolution while cross-predictability (P,) de-
creasesslightlywith increasing resolution, although
with a smaller D, These results are consistent with
our original hypotheses. Results for the Kissimmee/
Everglades data are markedly different from those
for the Maryland data. The auto-predictability of
Maryland land use changed much less with reso-
lution than the Kissimmee/Everglades land use.
The slope of the regression line (1-D,p for the
Kissimmee/Everglades data was roughly three
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Fig. 3. Natural log of resolution vs. natural log of predictability
for A) the Kississmee/Everglades, Florida, and B) the state of
Maryland land use data. Plot shows both auto-predictability
(P, indicating internal pattern in the data for three different
years, and cross-predictability (P,) indicating pattern matching
between null models of prior land use maps and the particular
map. The resolutions used (in cells/km?) were: Florida: 0.005,
0.021, 0.083, 0.333, 1.333; Maryland: 0.011, 0.043, 0.171,
0.686, 2.743.

times that for the Maryland data. Auto-predicta-
bility varied from about 0.65 to 0.35 over the range
of resolutions used for the Florida data, but only
from about 0.55 to 0.45 for the Maryland data. The
Kissimmee/Everglades data was also more predic-
table at the highest resolutions than the Maryland
data.

The cross-predictability results also differ
markedly between the Florida and Maryland data.
The slope of the regression line (1-D,,, was about
three times higher for the Florida data than the
Maryland data. Recall that the “null models” we
are comparing with “data” in this analysis were
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Fig. 4. Hypothetical relationship between resolution and predic-
tability of data and models. Data predictibility is the degree to
which the uncertainty about the state of landscape pixels is
reduced by knowledge of the state of adjacent pixels in the same
map. Model predictability is the degree to which the uncertainty
about the state of pixels is reduced by knowledge of the cor-
responding state of pixels in output maps from various models
of the system.

land use data from prior years. As we can see from
the results, this null model is a very good predictor
of land use at all resolutions if the land use did not
change radically over the study interval (as was the
case in Maryland). In the Florida case, we were
using a longer time interval and land use had
changed radically over this interval, so the null
model was much less accurate at all resolutions.

In addition, this “null model” is of limited real
usefulness since it embodies none of the underlying
processes that caused the land use changes in the
first place. In the more general case of dynamic
landscape models, or models in general, we would
not expect such high initial values of predictability,
and would expect the predictability to fall more
quickly with resolution. We are currently building
dynamic landscape models to test this hypothesis
which can be summarized in Fig. 4.

Discussion and conclusions

We can draw several conclusions from our analysis:
1.P, and P_ belong to a class of “fractal-like”
self-similar measures that vary in a regular way
as resolution changes. This allows a “fractal
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dimension” to be calculated that permits easy
conversion of measurements of P taken at one
resolution to other resolutions (for example,
resolutions higher than those for which we have
data). We suspect that there are many other
spatial measures, which also exhibit this kind of
self-similarity, that may be useful in developing
a generalized theory of scaling.

. P, generally increases with increasing resolu-

tion. This relationship represents the “benefit”
interms of information gained about the pattern
as resolution is increased.

. P, generally falls with increasing resolution.

This relationship represents the “cost” of de-
creased model predictability as resolution is in-
creased.

. Combining 2 and 3 leads to some hypotheses

about determining an “optimal” resolution for
specific studies. At very low resolution it is easier
to build predictive models, but they have little
useful detail. At high resolution much useful de-
tail is retained, but models are less ableto predict
it. An optimal resolution for scientific analysis
may occur where these trends intersect — where
one is balancing the costs and benefits incurred
with increasing resolution. These results are con-
sistent with empirical data from a survey of over
85 models of freshwater wetlands (Costanza and
Sklar 1985).

. The “models” we have analyzed so far are very

primitive “null models” that one would expect
to be different in overall predictability (P,) and
in their fractal predictability dimensions (Dp)
than more sophisticated process-based spatial
models (Costanza et al. 1990). We suspect that
there is a different optimal resolution for each
class of models, and possibly for each particular
set of modeling objectives. We also suspect that
P_and its associated D, will change with chang-
ing technology and modeling skills. We are cur-
rently pursuing research aimed at addressing
these questions by applying process-based spa-
tial models at several different resolutions.

. Theseresults may be generalizableto all forms of

resolutions (spatial, temporal, and number of
components) and may shed some interesting
light on “chaotic” behavior in systems. When

looking across resolutions, chaos may be the low
level of model predictability that occurs as a
natural consequence of high resolution. Lower-
ing model resolution can increase model predic-
tability by averaging out some of the chaotic be-
havior at the expense of losing detail about the
phenomenon. For example, Sugihara and May
(1990) found chaotic dynamics for measles epi-
demics at the level of individual cities, but more
predictable periodic dynamics for whole nations.
The idea is not to maximize the resolution of
analysisin order to “discover” this “unpredict-
able” chaoticbehavior, nor isitto maximizepre-
dictability by ignoring details. Rather, the aim is
to choose the resolution that maximizes the
effectiveness of the model in balancing the con-
flicting trends of data and model predictability
with changing resolution.
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