
175

TECHNICAL ARTICLE

An Open Geographic
Modeling Environment

Thomas Maxwell
Robert Costanza

University of Maryland
Institute for Ecological Economics

Solomons, MD
maxwell @ kabir.cbl.cees.edu

costza@cbl.cees.edu

Developing the complex computer models
that are necessary for effectively managing
human affairs through the next century
requires new infrastructure supporting high
performance collaborative modeling. In this
paper we describe our Open Geographic
Modeling Environment, which supports: (1)
modular, hierarchical model construction
and archiving/linking of simulation
modules, (2) graphical, icon-based model
construction, (3) transparent distributed
computing, and (4) integrating multiple
space-time representations. This
environment, which transparently links
icon-based modeling environments with
advanced computing resources, allows users
to develop models in a user-friendly,
graphical environment, requiring very little
knowledge of computers or computer
programming. The modeling environment
imposes the constraints of modularity and
hierarchy in program design, and supports
archiving of reusable modules in our
Modular Modeling Language (MML). An
associated library of "module wrappers" will
facilitate the incorporation of legacy
simulation models into the environment.

Keywords: Landscape modeling,
distributed modular simulation, spatial
modeling, Everglades

1. Introduction

Ecological systems play a fundamental role in
supporting life on Earth at all hierarchical scales.
They form the life-support system without which
economic activity would not be possible. There are
many signs that the collective global economic
activity is dramatically altering the self-repairing
aspects of the global ecosystem. Our ability to change
economic and ecological systems, and the rate of
spread of the impacts of these changes, far exceeds
our ability to predict the full extent of these impacts.
Protecting and preserving our natural life-support
systems requires the ability to understand the direct
and indirect effects of human activities over long
periods of time and over large areas. Computer
simulations are now becoming important tools to
investigate these interactions.

Spatial (geographic) modeling of ecosystems is
essential if one’s modeling goals include developing
a relatively realistic description of past behavior and
predictions of the impacts of alternative management
policies on future ecosystem behavior [1-3]. Develop-
ment of these models has been limited in the past by
the large amount of input data required, the diffi-
culty of even large mainframe serial computers in
dealing with large spatial arrays, and the conceptual
complexity involved in writing, debugging, and
calibrating very large simulation programs. These
limitations have begun to erode with the increasing
availability of remote sensing data and GIS systems
to manipulate it, and the development of parallel

176

Figure 1. The basic structure of a spatial ecosystem model. Each cell has a
(variable) habitat type, which is used to parameterize the unit model for that cell.
The unit model simulates ecosystem dynamics for that cell in the above-sediment
and below-sediment subsystems. Nutrients and suspended materials in the
surface water and saturated sediment water are fluxed between cells in the
domain of the spatial model.

computer systems. Although the importance of
advances in the parallel processing field have been
recognized in the field of spatial modeling [4], the
conceptual complexity involved in building complex
models in a distributed computational environment
remains a major barrier to the utilization of these
systems in the environmental sciences. We propose
to address this issue through the development of a
spatial modeling environment to support ecological/
economic (or other, e.g., biological/social/physical)
model development for state-of-the-art parallel and
serial computer systems. This system, which links
graphical tools for developing self-contained compo-
nent models with module databases and parallel
code generators, will support modular, reusable
model development, and allow scientists to utilize
state-of-the-art parallel processing architectures without
investing unnecessary time in computer programming.

2. Spatial Ecosystem Modeling
We define a dynamic spatial model as any formula-
tion that describes the changes in a spatial pattern
from time t to a new spatial pattern at time t + 1, such
that

where X(t) is the spatial pattern at time t and Y(t) is a
set of array, vector, or scalar variables that may affect
the transition. Although many forms of dynamic
spatial modeling are utilized within the broad field of
ecology [3], and the spatial modeling tools described
here are applicable to a wide range of modeling tasks
in the biological, social, economic, and physical
sciences, our primary focus in this paper is on
process-based landscape models. These models

177

Figure 2. STELLA diagram of the unit model used for the CELSS landscape model.

simulate spatial structure by first compartmentaliz-
ing the landscape into some geometric design and
then describing flows within compartments and
spatial processes between compartments according
to location-specific algorithms; see Figure 1. Ex-
amples of process-based, spatially articulate land-
scape models include wetland models [2, 5-9],
oceanic plankton models [10], coral reef growth
models [11], and fire ecosystem models [12].
One example of a process-based spatial simulation

model is the Everglades Landscape Model (ELM),
discussed in Section 3. Another example is the
Coastal Ecological Landscape Spatial Simulation
(CELSS) model, which consists of 2,479 intercon-
nected cells, each representing 1 km2, constructed for
the Atchafalaya/ Terrebonne marsh/ estuarine
complex in south Louisiana [2, 5]. Each 1 km2 cell in
the CELSS model contains a dynamic, nonlinear
ecosystem simulation model with seven state vari-

ables, similar to the one shown in Figure 2. The
model is generic in structure and can represent one of
six habitat types by assigning unique parameter
settings. Each cell is potentially connected to each
adjacent cell by the exchange of water and materials.
This model is several years old and is much simpler
than many models in use today.
The original CELSS model took four people about

four years (sixteen person-years) to fully develop and
implement using a supercomputer. The model has
proved to be very effective at helping us understand
complex ecosystem behavior and guiding policy and
research [2, 5]. We are now concerned with reducing
the time involved for both developing and running
this type of model, and moving the modeling to
smaller, less expensive computers. Toward that end,
we have developed the integrated spatial modeling
environment described below.

178

3. Everglades Landscape Model
The Everglades Landscape Model (ELM) [13] has
been developed by researchers at the University of
Maryland using the Spatial Modeling Environment,
Version 1; see Section 6. The ELM is designed to be
one of the principal tools in a systematic analysis of
the varying options in managing the distribution of
water and nutrients in the Everglades. Central to
these objectives is the prediction of vegetation change
under different scenarios. Water quantity, and the
associated hydroperiod, has been a central issue in
understanding changes to vegetation of the Ever-
glades [14, 15]. Nutrients from agricultural areas also
appear to be important in understanding vegetation
succession [16] in this historically oligotrophic
system [17]. The interaction of these factors, includ-
ing the frequency and severity of fires, appears to
drive the succession of the plant communities in the
Everglades [15,18,19]. Thus, this system has myriad
indirect interactions, constraints, and feedbacks that
result in complex ecosystem structure (biotic and
abiotic components and their flow pathways) and
function (the modes of interaction and their rates).
For this reason, it is critical to develop a systems
viewpoint toward understanding the dynamics
inherent in that ecosystem structure and function.
Part of this process is the development of a dynamic
spatial simulation model. The ELM is that analytic tool.
In this model, the important ecosystem processes

that shape plant communities are simulated within
the varying habitats distributed throughout the
landscape. The principal dynamics within the model
are plant growth in response to available sunlight,
temperature, nutrients, and water; flow of water plus
dissolved nutrients in three dimensions; fire initia-
tion and propagation; and succession in the plant
community in response to the environment. Using a
mass balance approach in incorporating process-
based data of a reasonably high resolution within the
entire Everglades landscape, changing spatial patterns
and processes can be analyzed within the context of
altered management strategies. Only by incorporating
spatial articulation can an ecological model realisti-
cally address large-scale management issues within
the vast, heterogeneous system of the Everglades.
For the spatially explicit ELM, the modeled land-

scape is partitioned into a spatial grid of 10,178
square unit cells, each having 1 km2 surface area. The
ELM is hierarchical in structure, incorporating an
ecosystem-level &dquo;unit&dquo; model [20] that is replicated
in each of the unit cells representing the Everglades
landscape. The unit model itself is divided into a set
of model sectors that simulate the important ecologi-
cal (including physical) dynamics using a process-

oriented, mass balance approach. While the unit
model simulates ecological processes within a unit
cell, horizontal fluxes across the landscape occur
within the domain of the SME. Within this spatial
context, the water fluxes between cells carry dis-
solved nutrients, determining water quantity and
quality in the landscape.

4. Conceptual Complexity
and Model Development
Development of ecosystem models in general has
been limited by the ability of any single team of
researchers to deal with the conceptual complexity of
formulating, building, calibrating, and debugging
complex models. The need for collaborative model
building has been recognized in the environmental
sciences [21, 22]. Realistic ecosystem models are
becoming much too complex for any single group of
researchers to implement single-handedly, requiring
collaboration between species specialists, hydrolo-
gists, chemists, land managers, economists, ecolo-
gists, and others. The current generation of models
tends to be idiosyncratic monoliths that are compre-
hensible only to the builders [22]. Communicating
the structure of the model to others can become an
insurmountable obstacle to collaboration and accep-
tance of the model. Policy makers are unlikely to
trust a model they do not understand.
A well-recognized method for reducing program

complexity involves structuring the model as a set of
distinct modules with well-defined interfaces [21-26].
Modular, hierarchical model structuring is well
developed in the context of discrete-event modeling
[27, 28], but has received comparatively little devel-
opment in the realm of continuous modeling [21, 26,
29]. Ecosystem models with a modular hierarchical
structure should be closer to natural ecosystem
structure than procedural models [21, 26], since the
component populations of ecosystems are themselves
complex hierarchical systems with their own internal
dynamics. Modular design facilitates collaborative
model construction, since teams of specialists can
work independently on different modules with
minimal risk of interference. Modules can be
archived in distributed libraries to serve as a set of

templates to speed future development. The inherit-
ance property of object-oriented languages allows the
properties of object-modules to be utilized and
modified without editing the archived object. A
modeling environment that supports modularity
could provide a universal modeling language to
promote worldwide collaborative model construction.
A second step toward reducing model complexity

involves the utilization of graphical, icon-based
module interfaces, wherein the structure of the

179

module is represented diagramatically, so that new
users can recognize the major interactions at a glance.
Scientists with little or no programming experience
can begin building and running models almost
immediately. Inherent constraints make it much
easier to generate bug-free models. Built-in tools for
display and analysis facilitate understanding, debug-
ging, and calibration of the module dynamics.
One major advantage of this graphical approach to

modeling is that the process of modeling can become
a consensus-building tool. The graphical representa-
tion of the model can serve as a blackboard for group
brainstorming, allowing policy makers, scientists,
and stake-holders to all be involved in the modeling
process. New ideas can be tested and scenarios

investigated using the model within the context of
group discussion as the model grows through a
collaborative process of exploration. When applied in
this manner, the process of creating a model may be
more valuable than the finished product.

5. Computational Complexity and
Parallel Processing
Tremendous computational resources are required to
integrate the equations of a large spatial model in a
reasonable amount of computer time. Large models
typically require supercomputers for efficient execu-
tion. This class of models is a near-ideal application
for parallel processing since a typical model consists
of a large number of cells that can be simulated semi-
independently. Each processor can be assigned a
different subset of cells, and most interprocessor
communication is nearest-neighbor only. Despite
their great promise and increasing availability,
parallel architectures have not found much usage in
the life sciences. The major barrier to wide acceptance
of these techniques has been the difficulty of pro-
gramming and debugging large parallel programs,
and reluctance on the part of scientists to invest time
in learning new languages and architectures.
High-performance computing must be transparent

in order to be generally accessible. The user should
not be concerned with the details: on what platform
the simulation is running or how the simulation is
being farmed out to different processors. These
details are handled automatically by the environment
without the user’s knowledge or intervention.
Supporting transparent distributed computing for
spatial modeling, however, requires infrastructure
development, as described later in this paper.

6. Geographic Modeling Environment
In an attempt to address the conceptual and compu-
tational complexity barriers to dynamic geographic
model development, we have developed the Spatial

modeling environment (SME), which links icon-
based graphical modeling environments with parallel
supercomputers and a generic object database [30,
31]. This system will allow users to create and share
modular, reusable model components, and utilize
advanced parallel computer architectures without
having to invest unnecessary time in computer
programming or learning new systems. The follow-
ing sections give a brief description of the current
design of the SME. A more detailed description can
be found in the web page [31].
The SME design has arisen from the need to

support collaborative model building among a large,
distributed network of scientists involved in creating
a global-scale ecological/economic model. Its design
should eventually be general enough to support most
large-scale modeling tasks within the biological/
environmental sciences. In the interest of maximizing
accessibility to a distributed network of collaborators,
the system is designed to support a range of plat-
forms, both in the front-end development environ-
ment and in the back-end distributed network of

platforms. Since our goal is to support modularity in
model design and separate the implementation of the
model dynamics from the details of simulation code
development, it has been necessary to abstract the
module libraries from both the front-end and the
back-end environments. We are thus led to the
formulation of a three-part ModelBase-View-Driver
architecture; see Figure 3. The three components are
described below.

6.1 View

The View component of the SME is used to graphi-
cally construct, calibrate, and test biological/ecologi-
cal modules. This component is represented by an
off-the-shelf graphical modeling environment such as
STELLA, Simulab, or Extend.

6.2 ModelBase

In the next step toward constructing a spatial model,
the Module Constructor translates the View ecosys-
tem component modules into Module objects defined
in our text-based Modular Modeling Language
(MML). The MML objects can then be archived in the
ModelBase to be accessed by other researchers, and/
or used immediately to construct a working spatial
simulation. Many MML objects can be combined
hierarchically in the MML. This MML hierarchy can
then be converted by the Code Generator into a C++
object hierarchy within the Spatial Modeling Environ-
ment (SME), where it can drive a spatial simulation.
The MML is designed to capture only the relevant

dynamics of the simulation module being constructed,
and leave out all implementation-specific details.

180

Figure 3. Overview of the ModelBase-View-Driver architecture

For example, the features that can be represented in
the MML include dynamics of growth, death, and
transformation of biological/ecological entities,
fluxes of water, nutrients, pollutants, etc., and the
internal decision and learning processes of biological
agents. The features that are not represented in the
MML include the spatio-temporal implementation of
the model, input and output of model data, and the
distribution of the model over a set of processors.
These features are implemented by the Code Genera-
tor and the simulation drivers; see the next sections.

6.3 Code Generators

The Code Generators convert an MML object hierar-
chy into a C++ object hierarchy that is incorporated
into the simulation driver application to create a
spatial simulation. The user customizes the set of
objects generated by entering information into a set
of configuration files that are initially generated by
the Code Generator. In the final version a menu-
driven interface will be provided to facilitate this
configuration step.
During the configuration step the user specifies the

additional information that is required to transform
the MML object into a dynamic simulation object.
The information entered falls into several general
categories:
(1) Space-Time Implementation. In this step, each MML

object is associated with a frame, which specifies
its space-time implementation. A frame is a C++

object that specifies the topology of the spatial
implementation of the module, methods for
interacting with and transferring data to other
frames, and temporal methods for handling the
passing of time. The driver geometry object
(Figure 6) maintains a catalog of available frames.
Examples of available frames include two-
dimensional grids (e.g., for landscapes), graphs
and networks (e.g., for river, canal, or neural
networks), and agents (e.g., for individual agents
moving about in the landscape). The user specifies a
frame type as well as a (set of) GIS map(s) that the
frame will read at runtime to configure itself.

(2) Input/Output Configuration. In this step the user
configures input to the simulation from the
biological/ ecological databases and GIS. Input
configuration must be done at code generation
time because the Code Generator uses this
information (together with the variable depen-
dency graph) to determine variable types. Output
configuration is done at runtime, although default
values can be specified in the CG configuration files.

6.4 PointGrid Library
The PointGrid Library (PGL) is a set of C++ distributed
objects designed to support computation on irregular,
distributed networks and grids. It contains the core set
of objects on which the SME Driver is constructed. The
PGL object structure is a direct mapping of an early
version of the OGIS Open Geodata Model [32] to C++,

181

Figure 4. Structure of the SME.2 simulation driver as discussed in the web page [31].

The PGL builds spatial representations from sets of
Point objects (see below) with links. It transparently
handles: (1) creation and decomposition (over
processors) of PointSets, (2) mapping of data over
and between PointSets, (3) iteration over PointSets
and Point Sub-Sets, (4) data access and update at
each Point, and (5) swapping of variable-sized
PointSet boundary (ghost) regions. Some of the
important ML classes are listed below.
. point: Corresponds to a cell in a GIS layer.
aggregates Point: Corresponds to a cell in a coarser
resolution GIS layer.

· PointSet: A set of Points with links (grid or network).
· DistributedPointSet: A PointSet distributed over

processors with variable-sized boundary (ghost)
layers.

· Coverage: Mapping from a DistributedPointSet to
the set of floats.

6.5 Driver

The SME Driver (Figure 4) is a distributed object-
oriented simulation environment that incorporates
the set of code modules that actually perform the
spatial simulation on the targeted platform. It is
implemented as a set of distributed C++ objects
linked by message passing. Of all the objects shown
in Figure 4, only the interface object is visible to the
user; the rest will perform their tasks automatically
and invisibly. The major driver components include

the following.
· Application Object: Handles general process of
simulation execution and coordination and sched-

uling of the other SME objects.
· Imported Objects and Data: This is the set of objects
and data that is created by the Code Generator and
imported into the driver. The objects are C++
implementations of the ModelBase modules. The
imported object structure is described in more
detail below.

· Geometry Object: Maintains the catalog of frames
(see Section 7.3) and handles all tasks relating to
the spatial configuration of the simulation, such as
translating/ transferring data between frames and
the network object.

. Network Object: Handles communication between
processors and the simulation host. It is implemented
using the MPI message passing interface standard [33].

· Interface Object: Menu-driver interface facilitating
user control of the simulation and real-time display
of simulation output. Provides the user with a
single familiar environment in which to interact
with simulations running on any one of a number
of parallel or serial computers.

- File Object: Handles archiving of simulation output
in HDF format. Later versions will actively partici-
pate in an open GIS environment using the Open
GeoData formalism [32].

182

The imported objects are built upon the following
classes:
. Module Class: The CodeGenerator Application
converts each module in the MML model descrip-
tion into a Module Object in the Driver. Each
Module Object has a set of Variable Objects and a
Frame Object. It also has a set of methods for
responding to simulation events such as &dquo;Initialize&dquo;
and &dquo;Update.&dquo;

· Frame Class: A Frame Object is a driver object
that specifies the topology of the spatial implemen-
tation of a Module Object, including methods for
interacting with and transferring data to other
frames. A frame has a list of Point Objects (POs),
with each PO corresponding to a cell in the frame’s
map region, which includes a partition of the study
area handled by the current processor plus a
communication buffer zone. The driver maintains a

catalog of available frames, which includes two-
dimensional grids (e.g., for landscapes), graphs and
networks (e.g., for river, canal, or neural networks),
areas (e.g., for embedded lumped-parameter
models), and point collections (e.g., for individual
agents moving about in the landscape).

. Variable Class: The CodeGenerator Application
converts each variable declared in the MML model

description into a Variable Object in the Driver.
The Variable class is a specialization of the Cover-
age class, which encapsulates a mapping from the
set of Point Objects owned by the Module’s Frame
Object into the set of floating point numbers.

6.6 User Interface
The SME user interface, which is currently under
development using the Tcl/Tk scripting language
[34], will provide the user with a single familiar
environment in which to build and run simulations
on any one of a number of parallel/ distributed or
serial computers. This user-friendly environment,
with hierarchically structured interaction levels, will
allow users with widely varying goals and back-
ground knowledge (from scientists and students to
policy makers) to build, configure, and run spatial
simulations, and to generate graphical output in a
manner appropriate to their level of expertise. The
lowest level of interface to the SME is expedited by a
tcl shell. In the SME/ tcl shell environment the user
can create new projects, customize the SME, and run
the various SME subapplications. Three menu-driven
tcl/tk applications are being developed for (1) config-
uring the Driver and code generators, (2) controlling
the simulation and visualizing the simulation output,
and (3) building models in MML.

6.6.1 Simulation Configuration Interface. All simulation
IO is accomplished using &dquo;pipe&dquo; objects, e.g., the
real-time screen display of a variable’s spatial data is
rendered by configuring a pipe object to connect the
spatial variable with a map animation object. The
user interface provides a menu-driven tool for
configuring pipes for (1) map input from GIS, (2)
parameter input from relational databases, (3) map
output to GIS, (4) assorted data input/output to/
from disk archives, and (5) various types of real-time
display, including map animations, graphs, and tables.
This interface also allows the user to configure various
parameters associated with each simulation object.

6.6.2 Simulation Object Browser and Viewer. A separate
tcl/ tk application allows the user to browse through
the objects in a paused simulation and view each
object’s internal data structures in a convenient
format. The browser also provides a menu of each
object’s dependent objects, so users can quickly
traverse the dependency tree while searching for
anomalies in the simulation output. This application
incorporates the viewers that are used for real-time
display of simulation output.

6.6.3 Icon-Based Model Development Interface. A third
interface component is under development to pro-
vide an icon-based interface to the ModelBase

component of the SME, to facilitate simulation
module development and linking/ archiving in the
Modular Modeling Language (MML). This interface
provides a graphical mapping of each component of
the MML language, allowing modelers to create
MML modules in a user-friendly, visual environ-
ment. The environment enforces proper MML syntax
and model design, provides a blackboard for collabo-
rative model development, and also provides on-line
help screens to document each component of the
MML language.

6.7 Linking Existing Simulation Code with the SME
In order to create a new module in the SME, one
must develop it in the View graphical modeling
environment or the MML. There is a wealth of

complex simulation code in existence in the world
today, written mainly in FORTRAN or C, that would
be too difficult to completely rewrite in the MML or a
View-supported language (although this might be
the optimal approach, manpower permitting).
Therefore, we are developing a stand-alone version
of the network object displayed in Figure 4 that will
form the core of an &dquo;SME wrapper.&dquo; This &dquo;wrapper&dquo;
is a library of FORTRAN or C functions that a
simulation developer can embed in existing &dquo;legacy&dquo;

183

code to give it the ability to interact and exchange
data with the SME over the Internet. Once the

wrapper is incorporated into the legacy simulation
code, then SME variables can be linked with legacy
variables using simple configuration commands.
The SME and the legacy code can be run simulta-
neously and can feed information back and forth
across the Internet. For example, an SME landscape
simulation might wish to link with an existing
hydrodynamics simulation to handle the hydrody-
namics of the watershed.

7. Simulation Development in the SME
Realistic spatial models are extremely complex,
requiring large quantities of data, so that designing,
calibrating, and validating these models is a difficult
task. The development of a spatial simulation occurs
in three stages: (1) non-spatial module development,
(2) non-spatial model development (linking mod-
ules), and (3) spatial model development.

7.1 Simulation Design
The simulation design process occurs primarily in the
View component, where the simulation unit modules
are created. Thus, the vast majority of the design
work occurs in the non-spatial regime, involving
concepts and processes that are familiar to most
modelers. Typically a group of modelers will work
together on a set of closely related modules, with
prior agreement on the set of available outputs from
each module. Once developed and tested in the View
environment, the modules are then linked in the
View or ModelBase environment for a further round
of tests. Implementing the spatial interactions can
occur by designing these interactions in the MML
language, or by linking predefined methods from the
SME Driver libraries. Libraries have been developed
to implement common hydrologic scenarios, includ-
ing movement of water and constituents over and
under the landscape surface. The spatial dynamics
are tested in the SME Driver environment.

7.2 Calibration and Verification
The simulation calibration and verification process
involves three phases:
. Phase 1: The unit modules are calibrated individu-

ally and non-spatially in the View environment.
. Phase 2: The assembled unit model is calibrated and
verified non-spatially in either the View or the
Driver environment.

. Phase 3: The full unit model is calibrated and
verified spatially in the Driver environment. The
final stage of calibration involves only the spatial

aspects of the simulation; all calibration that can be

accomplished without reference to the spatial
nature of the system is completed in phases 1 and 2.
Due to data limitation, most calibration and

verification in phase 3 is accomplished using sets of
&dquo;integrators,&dquo; i.e., localized quantities whose dynam-
ics depend on a number of spatial processes. For
example, river flux rate and nutrient concentrations
may be measured at a number of stations along a
river. These data play a major role in calibrating and
verifying a number of spatial processes that influence
the movement of water and nutrients across the

landscape and into the river.

8. Conclusions

Parallel computer hardware and software are now
well developed enough to allow their use in large-
scale biological and environmental modeling. Parallel
systems are particularly well suited to spatial model-
ing, allowing relatively complex unit models to be
executed over a relatively high-resolution spatial
array at reasonable cost and speed. When linked with
icon-based graphical model development tools and
GIS/database tools, one has a powerful yet easy-to-
use spatial modeling environment.
In addition, the widespread use of object-based

modeling environments linked transparently to state-
of-the-art distributed computing resources could
result in a fundamental paradigm shift in complex
systems modeling. The modeling formalism imposes
the constraints of modularity and hierarchy in
program design. General adoption of this paradigm
will support the development of libraries of modules
representing reusable model components that are
globally available to model builders, as well as make
advanced computing architectures available to users
with little computer knowledge.
We believe that effectively managing human

affairs through the next century will require ex-
tremely complex and reliable computer models.
Widespread utilization of modeling environments
supporting graphical, hierarchical/ modular design
may be essential in facilitating reliable, economical
model construction.

184

9. References

[1] Risser, P.G., Karr, J.R., and Forman, R.T.T. 1984.
Landscape Ecology: Directions and Approaches. Illinois
Natural History Survey, Champaign, IL.

[2] Costanza, R., Sklar, F.H., and White, M.L. 1990. "Mod-
eling coastal landscape dynamics." BioScience vol. 40,
pp. 91-107.

[3] Sklar, F.H. and Costanza, R. 1991. "The development of
dynamic spatial models for landscape ecology."
Quantitative Methods in Landscape Ecology. Turner, M.G.,
and Gardner, R., eds. New York: Springer-Verlag.

[4] Casey, R.M. and Jameson, D.A. 1988. "Parallel and
vector processing in landscape dynamics." Applied
Mathematics and Computation vol. 27, pp. 3-22.

[5] Sklar, F.H., Costanza, R., and Day, J.W.J. 1985. "Dy-
namic spatial simulation modeling of coastal wetland
habitat succession." Ecological Modeling vol. 29, pp. 261-
281.

[6] Costanza, R., Sklar, F.H., and Day, J.W. 1986. "Model-
ing spatial and temporal succession in the Atchafalaya/
Terrebonne marsh/estuarine complex in South Louisi-
ana." Estuarine Variability. Wolfe, D.A., ed., New York:
Academic Press.

[7] Kadlec, R.H. and Hammer, D.E. 1988. "Modeling
nutrient behavior in wetlands." Ecological Modeling vol.
40, pp. 37-66.

[8] Boumans, R.M.J. and Sklar, F.H. 1991. "A polygon-
based spatial model for simulating landscape change."
Landscape Ecology vol. 4, pp. 83-97.

[9] White, M., Day, D., Maxwell, T., Costanza, R., and
Sklar, F. 1992. "Ecosystem modeling Utilizing desktop
parallel computer technology." Hydraulic and Environ-
mental Modeling: Estuarine and River Waters. Falconer, R.,
ed. Ashgate.

[10] Show, LT., Jr. 1979. "Plankton community and
physical environment simulation for the Gulf of Mexico
region." Proceedings of the 1979 Summer Computer
Simulation Conference. The Society for Computer
Simulation International. pp. 432-439.

[11] Maguire, L.A. and Porter, J.W. 1977. "A spatial model
of growth and competition strategies in coral communi-
ties." Ecological Modeling vol. 3, pp. 249-271.

[12] Kessell, S.R. 1977. "Gradient modeling: A new
approach to fire modeling and resource management."
Ecosystem Modeling in Theory and Practice. Hall, C.A.S.
and Day, J.W.J., eds. New York: Wiley-Interscience.

[13] Fitz, H.C., Costanza, R., and Reyes, E. 1993. The
Everglades Landscape Model (ELM). South Florida Water
Management District, Everglades Research Division.

[14] Davis, S.M. 1994. "Phosphorus inputs and vegetation
sensitivity in the Everglades." Everglades: The Ecosystem
and Its Restoration. Davis, S.M. and Ogden, J.C., eds.
Delray Beach, FL: St. Lucie Press.

[15] White, P.S. 1994. "Synthesis: Vegetation pattern and
process in the Everglades ecosystem." Everglades: the
Ecosystem and Its Restoration. Davis, S.M., ed. Delray
Beach, FL: St. Lucie Press.

[16] Davis, S.M., 1991. "Growth, decomposition and
nutrient retention of cladium jamaicense crantz and
typha domingensis pers. in the Florida Everglades."
Aquatic Botany vol. 40, pp. 203-224.

[17] Steward, K.K. and Ornes, W.H. 1975. "The autecology
of sawgrass in the Florida Everglades." Ecology vol. 56,
pp. 162-171.

[18] Duever, M.J. 1984. "Environmental factors controlling
plant communities of the Big Cypress Swamp."
Environments of South Florida: Present and Past. Gleason,
P.J., ed. Miami, FL: Miami Geological Society.

[19] Gunderson, L.H. 1989. "Historical hydropatterns in
wetland communities of Everglades National Park."
Freshwater Wetlands and Wildlife vol. 61, pp. 1099-1111.

[20] Fitz, H.C., DeBellevue, E., Costanza, R., Boumans, R.,
Maxwell, T., and Wainger, L. 1995. "Development of a
general ecosystem model (GEM) for a range of scales
and ecosystems." Ecological Modeling vol. 88, pp. 263-
297.

[21] Goodall, D.W. 1974. The Hierarchical Approach to Model
Building. Wageningen: Center for Agricultural Publish-
ing and Documentation.

[22] Acock, B. and Reynolds, J.F. 1990. "Model structure
and data base development." Process Modeling of Forest
Growth Responses to Environmental Stress. Dixon, R.K.,
Meldahl, R.S., Ruark, G.A., and Warren, W.G., eds.
Portland, OR: Timber Press.

[23] Gauthier, R.L. and Ponto, S.D. 1970. Designing Systems
Programs. Englewood Cliffs, NJ: Prentice-Hall.

[24] Tichenor, L.H. 1989. "Modular simulation of the static
portions of the leaf budget. SIMULATION vol. 55, pp.
345.

[25] Hodges, T., Johnson, S.L., and Johnson, B.S. 1992. "A
modular structure for crop simulation models."

Agronomy Journal vol. 84, pp. 911-915.
[26] Silvert, W. 1993. "Object-oriented ecosystem model-

ing." Ecological Modeling vol. 68, pp. 91-118.
[27] Zeigler, B.P. 1976. Theory of Modeling and Simulation.

New York: John Wiley & Sons.

[28] Zeigler, B.P. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models. New York: Academic
Press.

[29] Cellier, F.E. 1991. Continuous System Modeling. New
York: Springer-Verlag.

[30] Maxwell, T. and Costanza, R. 1995. "Distributed
modular spatial ecosystem modelling." International
Journal of Computer Simulation: Special Issue on Advanced
Simulation Methodologies vol. 5, no. 3, pp. 247-262.

[31] SME2: Spatial Modeling Environment, version 2 alpha.
1995. URL: http://kabir.umd.edu /SMP/MVD/
SME2.html.

[32] OGIS: The OpenGIS Guide. 1996. URL: http://ogis.org/
guide/ guidel.htm.

[33] MPI: Message Passing Interface. 1995. URL: http://
www.mcs.anl.gov/mpi/index.html.

[34] Tcl/Tk. 1996. Tcl/Tk Page at Sun MicroSystems. URL:
http://www.sunlabs.com/research/tcl/index.html.

185

THOMAS P. MAXWELL received his Master’s degree in
Physics, focusing on chaos theory and nonlinear dynamics,
in 1983, and his PhD in Physics, focusing on neural
networks, parallel processing, and artificial intelligence, in
1988. He has developed neural network architectures for
image processing, pattern recognition, adaptive control,
associative memory, and artificial intelligence applications.
For the last five years he has been developing spatial
ecosystem models and simulation environments for the
International Institute for Ecological Economics. A major
focus of this work has been the development of
collaborative tools to support modular spatiotemporal
modeling in distributed computational environments. He
has worked as a consultant for NASA, several of NASA’s
contractors, the University of Louisiana, and the
University of Illinois.

ROBERT COSTANZA is Director of the University of
Maryland’s International Institute for Ecological
Economics, and a professor in the Center for
Environmental and Estuarine Studies, University of
Maryland System, Solomons, MD. He is also Director of
the complex systems research program at Beijer
International Institute of Ecological Economics, The Royal
Swedish Academy of Sciences, Stockholm, Sweden. He
received his PhD from the University of Florida in Systems
Ecology with a minor in Economics. He is cofounder and
president of the International Society for Ecological
Economics (ISEE) and chief editor of the Society’s journal:
Ecological Economics. In 1992 he was awarded the Society
for Conservation Biology Distinguished Achievement
Award, and in 1993 he was selected as a Pew Scholar in
Conservation and the Environment.

Dr. Costanza’s research has focused on the interface
between ecological and economic systems, particularly at
larger temporal and spatial scales. This includes landscape
level spatial simulation modeling, analysis of energy flows
through economic and ecological systems, valuation of
ecosystem services and natural capital, and analysis of
dysfunctional incentive systems and ways to correct them.

