
E L S E V I E R Ecological Modelling 103 (1997) 105-113

|tBUNZnt

A language for modular spatio-temporal simulation

Tom Maxwell *, Robert Costanza

University of Maryland, Institute for Ecological Economics, Box 38, Solomons, MD 20 688, USA

Accepted 28 February 1997

Abstract

Creating an effective environment for collaborative spatio-temporal model development will require computational
systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction
and archiving/linking of simulation modules; (2) support for graphical, icon-based model construction; (3) transpar-
ent, seamless support for state of the art distributed computing. The key requirement for this support is the adoption
of a modeling standard, either in the form of an interface specification language (ISL), or a modular modeling
language (MML). The ISL supports remote linking of simulation modules developed in disparate languages and
environments. The MML provides a language standard for the development and archiving of simulation modules.
Optimally, the implementation of these languages will include seamless links to graphical, icon-based simulation
environments and distributed computing environments. In this paper we discuss the authors' program to develop and
implement an MML-based integrated environment designed to provide this support for distributed modular
spatio-temporal modeling. © 1997 Elsevier Science B.V.

Keywords: Modular; Hierarchical; Distributed; Spatial

I. Introduction

Protecting and preserving our natural life sup-
port systems requires the ability to understand the
direct and indirect effects of human activities on
these systems at multiple space-time scales. Our
modeling and understanding of these systems has

* Corresponding author. Tel.: + 1 410 3267388; e-mail:
maxwell@kabir.cbl.cees.edu; http:// kabir.cbl.cees.edu/Tom/
Maxwell.html

been largely isolated and unconnected in disci-
plinary specialties. There is great need for an
integrated conceptual framework, as well as a
practical toolbox allowing researchers from many
disciplines to collaborate effectively to better un-
derstand the dynamics of coupled environmental-
economic systems. Supporting an inter-
disciplinary research program of this magnitude
will require the development of new modeling
tools, data bases, and collaborative network infor-
mation-sharing and simulation environments

0304-3800/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PH S0304-3800(97)00103-8

106 T. Maxwell, R. Costanza / Ecological Modelling 103 (1997) 105-113

to allow the linkage o f existing models and the
evolution of a new set of modular, multi-faceted,
adaptive models. In this paper we outline a num-
ber of these necessary advances and discuss cur-
rent development efforts in this area.

2. Supporting collaborative modeling

Spatially explicit modeling of ecological-eco-
nomic systems is essential if one's modeling goals
include developing a relatively realistic description
of past behavior and predictions of the impacts of
alternative management policies on future system
behavior (Risser et al., 1984; Costanza et al.,
1990; Sklar and Costanza, 1991). There exists a
rich set of research problems associated with the
implementation of computer based collaborative
technologies for spatially-articulated ecological
economic modeling. Three important areas of on-
going research and development are integrated
support for: (1) modular, collaborative model de-
velopment; (2) transparent access to high perfor-
mance computing resources; (3) graphical display
and manipulation of model structure and dynam-
ics; and (4) integrating disparate spatio-temporal
representations.

2.1. Collaborative, modular model development

One of the factors limiting the development of
ecosystem models in general has been the inability
of any single team of researchers to deal with the
conceptual complexity of formulating, building,
calibrating, and debugging complex models. The
need for collaborative model building has been
recognized (Goodall, 1974; Acock and Reynolds,
1990) in the environmental sciences. Realistic
ecosystem models are becoming much too com-
plex for any single group of researchers to imple-
ment single-handed, requiring collaboration
between species specialists, hydrologists, chemists,
land managers, economists, ecologists, and others.
Communicating the structure of the model to
others can become an insurmountable obstacle to
collaboration and acceptance of the model.

A well-recognized method for reducing pro-
gram complexity involves structuring the model as

a set of distinct modules with well-defined inter-
faces (Gauthier and Ponto, 1970; Goodall, 1974;
Acock and Reynolds, 1990; Silvert, 1993) Modu-
lar design facilitates collaborative model construc-
tion, since teams of specialists can work
independently on different modules with minimal
risk of interference. Modules can be archived in
distributed libraries and serve as a set of templates
to speed future development. A modeling environ-
ment that supports modularity could provide a
universal modeling language to promote global
collaborative model development.

2.2. High performance computing

Tremendous computational resources are re-
quired to integrate the equations of a large spatial
model in a reasonable amount of computer time.
Large models typically require supercomputers or
parallel/distributed processing for efficient execu-
tion. This class of models is a near ideal applica-
tion for parallel processing since a typical model
consists of a large number of cells that can be
simulated semi-independently. Each processor can
be assigned a different subset of cells, and most
interprocessor communication is nearest-neighbor
only. Despite their great promise and increasing
availability, parallel architectures have not found
much usage in the life sciences. The major barrier
to wide acceptance of these techniques has been
the difficulty of programming and debugging
large parallel programs, and reluctance on the
part of scientists to invest time in learning new
languages and architectures

2.3. Graphical display

A second step toward reducing model complex-
ity involves the utilization of graphical, icon-
based module interfaces, wherein the structure of
the module is represented diagramatically, so that
new users can recognize the major interactions at
a glance. Scientists with little or no programming
experience can begin building and running models
almost immediately. Inherent constraints make it
much easier to generate bug-free models. Built-in
tools for display and analysis facilitate under-
standing, debugging, and calibration of the rood-

T. Maxwell. R. Costanza /Ecological Modelling 103 (1997) 105 113 107

ule dynamics. One major advantage of this graph-
ical approach to modeling is that the process of
modeling can become a consensus building tool.
The graphical representation of the model can
serve as a blackboard for group brainstorming,
allowing policy makers, scientists, and stakehold-
ers to all be involved in the modeling process.
When applied in this manner the process of creat-
ing a model may be more valuable than the
finished product.

3. Methods for supporting collaborative modeling

translate modules in other languages into MML
for archiving and linking. The major advantage of
this approach is that all modules can be archived
and executed in a single unifying environment,
which can provide extensive simulation services
not found in a loosely coupled heterogeneous
simulation. The modeling language should facili-
tate model development and communication be-
cause it focuses on the issues of interest to the
modelers while hiding unnecessary or dangerous
implementation details, and encourages modular,
hierarchical program design. We will discuss this
approach for the remainder of this paper.

There are two major methods for supporting
collaborative model construction, through imple-
mentation of a 'module wrapper', and through
implementation of a 'modular modeling lan-
guage'.

3.1. The module wrapper approach

This approach involves the development of a
set of 'wrappers' which encapsulate legacy simula-
tion code modules in order to integrate them into
a single distributed environment, resulting in a
'federated' simulation. This wrapper is imple-
mented as a library of functions (or distributed
objects) that is embedded in the existing simula-
tion codes to enable them to 'publish' (and 'sub-
scribe to') simulation services over the network.
Each module publishes its set of available services
using a common high-level interface specification
language, which is platform and programming
language independent. The base infrastructure for
implementing this approach is just becoming
available with the advent of interoperability spe-
cifications such as CORBA (CORBA, 1996), and
OGIS (OGIS, 1996). Significant infrastructure de-
velopment remains to be done, however, before
this approach become widely available.

3.2. Modular modeling language (MML)

This approach involves the utilization of a spe-
cialized language to support modular modeling.
Modules can be developed, archived, and linked
in this language. Converters can be created to

4. Properties of a modular modeling language and
environment

A modular modeling language (MML) is only
useful within the context of a modular modeling
development environment (MMDE). The basic
properties of a MML and MMDE are outlined
here. For further reading on object oriented de-
sign methodology, consider the general references
(Zeigler, 1976, 1990; Cook and Daniels, 1994;
Erich Gamma et al., 1995; Robinson, 1996), as
well as the environmental sciences references in
Section 2.1.

4.1. Modular modeling language

Some of the key properties of a MML include:
• Simplicity: the language should capture only

details relevant to the dynamics of the model
and leave all other computational details to the
MMDE.

• Modularity: the separate components of the
model should be represented in the language as
a set of self-contained modules with well
defined inputs and outputs. The module encap-
sulates it's data and dynamics in the sense that
it can only be interfaced through it's inputs and
outputs.

• Encapsulation hierarchy: each module may in-
clude (encapsulate) other modules in it's defini-
tion. The scope of the encapsulated module is
the encapsulating module; i.e. it can not inter-
act (connect) directly with modules declared
outside of the encapsulating module.

108 T. Maxwell, R. Costanza / Ecological Modelling 103 (1997) 105-113

• Inheritance hierarchy: modules can subclass
other modules. This allows modules to inherit
some of the functionality (data and dynamics)
of other modules while overriding other func-
tionality. This property facilitates the construc-
tion of specialization hierarchies, in which each
level of inheritance is composed of increasingly
specialized modules.

• Connections: the language should include a
method for declaring connections between
modules (from output variables to input vari-
ables).

4.2. Modular modeling development environment

Some of the key properties of a MML-based
development environment include:
• Graphical interface: the environment should

provide a graphical interface to the MML, in
which each element is represented by an icon,
and inter-element connections are displayed
graphically. Scientists unfamiliar with the envi-
ronment should be able to begin building and
running models almost immediately; the inter-
face should be largely self-explanatory.

• Simulation services: the modeling environment
should provide a number of user-transparent
simulation services. These services should in-
clude: (i) modeling toolbox, tools for integrat-
ing differential equations, performing
sensitivity analyses, and displaying the model
output graphically in various forms, as well as
providing math tools to support model build-
ing; (ii) network toolbox, tools for automati-
cally distributing the simulation over a network
of processors; and (iii) data access/storage utili-
ties, tools for seamlessly linking to GIS/data-
bases for simulation data input and output.

5. Spatial modeling language

In an attempt to address the conceptual and
computational complexity barriers to spatio-tem-
poral model development, we have implemented a
realization of the MML and MMDE specifica-
tions (detailed in Section 4) which we call the
spatial modeling language (SML) and the spatial

modeling environment (SME). The SML is de-
scribed in this section, and the SME is described
in Section 6.

5.1. Description of the SML

The spatial modeling language (SML) is a data-
parallel simulation design language designed to
support modular simulation by incorporating the
MML specifications outlined in Section 4.1. It is
structured as a set of nested object definitions and
attribute-value declarations. The declarative struc-
ture of the SML is described in this section, the
SML infrastructure for handling spatial interac-
tion is described in Section 6.

5. I. 1. Object definitions
The general form of a object definition in SML

is:

< modifiers > < objectType > < objectName

> : < parentObjectName >

where < objectName > is the name of the object,
< objectType > is the type of the object, and
< parentObjectName > is the name of the object
that this object inherits from. Each command also
accepts a set of modifiers, which denote special-
izations of the declared object. Each object decla-
ration can optionally be followed by a definition
of the declared object, which is enclosed in brack-
ets. Object definitions may contain declarations
and definitions of other objects.

5.1.2. Attribute-value declarations
The general form of a attribute-value declara-

tion in SML is:

< modifiers > < objectType > < objectName >

= < value >

where < objectName > is the name of the object,
< objectType > is the type of the object, and
< value > is the value to be associated with the
attribute. Each declaration also accepts a set of
modifiers, which denote specializations of the
declaration. Values can have a number of differ-
ent formats, including list, equation, number,
string, etc.

T. Maxwell, R. Costanza /Ecological Modelling 103 (1997) 105 113 109

5.1.3. SML object types
The object types supported by the current ver-

sion of the SML include:
(1) Module: the module object is the unit of

encapsulation of the model dynamics. Modules
are designed to be self-contained archivable sub-
models, which may interact with other modules
through well-defined input and output ports.
Module declarations may be nested to arbitrary
depth, and modules may inherit from other mod-
ules.

(2) Variable: variable objects represent the
atomic components of a module. Command
qualifiers can be used to specify specific variable
sub-classes, such as state variable, flux variable,
map-dependent parameter, timeSeries, spatially
interpolated timeSeries, and parameter.

(3) Frame: a frame object specifies the topology
of the spatial implementation of a module.
Frames are discussed in Section 6.

(4) Connection: a connection object establishes
a link from an output variable in one module to
an input variable in another module.

(5) Input: each module may declare a set of
input ports. These ports behave as local variables
within the module, i.e. they appear within the
module's dynamic equations as variables declared
within the module. Each port is connected to an
output variable in another module. At the begin-
ning of each update event, data is imported
through each referenced port from the connected
output variable and remapped (if necessary) into
the importing module's frame.

(6) Event: the simulation is driven by a set of
events. An event object contains a timestamp and
a list of commands to be executed, sorted by
dependency. Events are posted to a global list
which is sorted by timestamp. The events in the
list are executed sequentially to generate the dy-
namics of the simulation. When an event is exe-
cuted the following steps occur: (ii) the global
simulation time is set equal to the event's times-
tamp; (ii) the Event's Commands are executed;
and (iii) the event uses it's schedule object to
reschedule itself.

(7) Schedule: the schedule object controls the
scheduling of Events. Schedules are arranged in a
hierarchical structure, with variables inheriting

schedules from their modules and sub-modules
inheriting schedules from super-modules. At any
level of the hierarchy a schedule may be re-
configured, overriding aspects of it's inherited
schedule.

(8) Command: the atomic components of an
event are command objects. Each command ob-
ject is designed to perform a single 'action'. The
currently supported command classes include: (i)
update: update a variable's data structures, either
by executing a set of equations of by importing
data from another module; (ii) script: execute a
script in the shell environment; (iii) pipe: execute a
pipe operation.

(9) Pipe: all data input and output is performed
using pipes. A pipe object links a variable object
with an external data source/sink/display object.
pipes exist for: (i) importing data from the GIS or
database; (ii) archiving data to the GIS or data-
base; and (iii) displaying data in real time using
various formats.

5.2. An SML example

The SML code in lines 1-49 of Fig. 1 repre-
sents the declaration and definition of a simple
module implementing predator dynamics (with
migration). The line numbers in Fig. 1 were added
for reference purposes, and are not part of the
language. The SML code was imported from a set
of equations generated using a graphical modeling
tool such as STELLA. The module has a set of
variable objects (declared with the variable com-
mand), which can be internal, or input from
another module (declared with the input modifier,
as in line 3). All internal variables can serve as
exports to other modules. Each variable has an
associated set of command declarations, which
define the operations that are used to update the
variable's values (as described in Section 6.4). The
SME code generator automatically associates
commands with events, which subsequently drive
the simulation. The user may override the default
event structure by defining a set of customized
events if necessary.

The SML code in Lines 51-62 of Fig. 1 repre-
sents the declaration and definition of a module
that uses subclassing to customize the (previously

110 T. Maxwell, R. Costanza / Ecological Modelling 103 (1997) 105-113

Fig. 1. An SML example.

defined) PREDATORS_module by adapting it to
a specific study area. A frame is declared (lines
52-55) to specify the topology of the module. The
initialization command il l for the predator state
variable (line 40) is overridden by a map input
pipe (lines 56-59) in order to specify the initial
distribution of predators. This is accomplished by
'extending' the PREDATOR_POPULATION
state variable declaration (line 56).

6. Spatial modeling environment

In an attempt to address the conceptual and
computational complexity barriers to spatio-tem-
poral model development, we have implemented a
realization of the MMDE specification (detailed
in Section 4) which we call the spatial modeling
environment (SME) (Maxwell, 1994; Maxwell and
Costanza, 1994, 1995). The spatial modeling lan-
guage (SML) forms the core of (SME), which
links icon-based graphical modeling environments
with parallel supercomputers and a generic object
database. This system will allow users to create
and share modular, reusable model components,
and utilize advanced parallel computer architec-
tures without having to invest unnecessary time in

computer programming or learning new systems.
The SME is described elsewhere (references
above) in this paper we discuss only the aspects of
the SME/SML which support spatial interactions.

6. I. The S M E driver

The SME driver is the distributed object-ori-
ented simulation environment which incorporates
the set of code modules that actually perform the
spatial simulation. The SME code generator will
convert an SML object hierarchy (typically devel-
oped using one of the SME/SML graphical model
development tools) into a C + + object hierarchy
which is incorporated into the SME driver appli-
cation. The simulation is executed within the
SME, which provides numerous simulation ser-
vices such as transparent distributed computing,
integrated visualization and analysis tools, and
integrated GIS and database access.

6.2. Spatial representations: the PointGrid library

The PointGrid library (PGL) is a set of C + +
distributed objects designed to support computa-
tion on irregular, distributed networks and grids.
It contains the set of objects that the SME driver

T. Maxwell, R. Costanza /Ecological Modelling 103 (1997) 105 113 111

uses to build spatial representations. The PGL
object structure is a mapping of (a subset of) an
early version of the OG1S Open Geodata Model
(OGIS, 1996) to C + +.

The PGL supports spatial representations as
sets of Point objects (see below) with links. It
transparently handles: (1) creation and decompo-
sition (over processors) of Point Sets; (2) mapping
of data over and between Point Sets; (3) iteration
over Point Sets and Point Sub-Sets; (4) data ac-
cess and update at each Point; and (5) swapping
of variable-sized PointSet boundary (ghost) re-
gions. Some of the important PGL classes are:
• Point: corresponds to a cell in a GIS layer.
• Aggregated point: corresponds to a cell in a

coarser resolution GIS layer.
• PointSet: a set of Points with (optional) links

(grid, network, tree, population, etc.).
• DistributedPointSet: a PointSet distributed

over processors with variable-sized boundary
(ghost) layers.

• Coverage: one-to-one mapping from a Dis-
tributedPointSet to the set of floating point
numbers.

6.3. Modules and frames

Each module that is declared in the SML has a
frame object that is used to configure the spatial
representation of the module in the driver. All
variable objects belonging to a module inherit the
module's frame. The SME provides a set of avail-
able frame types, which currently includes 2D
grids, networks, and trees. The user specifies a
frame type and a frame configuration map (to be
read from the GIS at runtime) for each module.
The frame object is implemented in the driver as a
DistributedPointSet object, i.e. each frame has a
list of Point objects (POs), with each PO corre-
sponding to a cell in the frame's map region,
which includes a partition of the study area han-
dled by the current processor plus a communica-
tion buffer zone. Every frame object in the SME
includes methods for interacting with and trans-
ferring data to/from other frames. The SML spa-
tial variable object is implemented as a coverage
object, i.e. each variable object in the driver con-
tains a mapping from it's (module's) frame to the
set of floats.

6.4. Defining spatial interactions in the SML

Dynamic variables in the SML fall into two
general classes: (1) spatial variables, which (at any
point in time) have a different value at each cell of
the frame; and (2) non-spatial variables, which
have a single value in all cells. All operations on
spatial variables (e.g. command u2 in Fig. 1, lines
12-14) are executed in a 'data parallel' mode.
This means that an operation defined as A + B
(where A, and B are spatial variables) results in a
separate addition operation for each cell of the
frame, using the variable values associated with
that cell.

Defining the intercellular interactions requires
an additional syntax. In any SML equation, a
term defined as S@(x, y) (where S is a spatial
variable with a grid frame, and x and y are
integers) represents the value of S x cells to the
north and y cells to the east. This syntax has a
similar meaning in other frames. Fig. 1, line 12
shows an example of predator migration dynam-
ics defined using this notation. We are currently
developing an additional set of operators to de-
clare common spatial operations, such as convo-
lutions and spatial averages.

7. Patuxent landscape model example application

The current applications of this framework in-
clude the patuxent landscape model (PLM),
(PLM, 1995) and the everglades landscape model
(ELM, 1995). The PLM is a regional landscape
simulation model that can address the effects of
different management and climate scenarios on
the ecosystems in the Patuxent watershed. The
study area for the PLM is shown in Fig. 2. The
PLM contains about 6000 spatial cells each con-
taining a dynamic simulation model (based on the
GEM model (Fitz et al., 1996)) of approximately
20 state variables partitioned into 14 modules. It
uses two frames, a 2D grid frame covering the
active study area (for modules such as Con-
sumers, Nitrogen, Hydrology, Macrophytes, De-
tritus, etc.) and a tree-network frame for the River
modules (covering the gray areas in Fig. 2). The
four rectangles overlaid on the map in Fig. 2

112 T. Maxwell, R. Costanza / Ecological Modelling 103 (1997) 105-113

6
7
8
9

10
11
12
13
14
15
161
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5O
51
5 2
53
54!
5 s
5 6
57i
5Bi
5 9
6O
61
62

Module PREDATORS_module {

input Variable DEERDENSITY { }

Var iable KILLS_PER_PREDATOR {
update Command u0 { Value = Graph0(DEER_DENSITY); }

}
f I u x Var iable MIGRATION_EAST {

update Command u I { Value = PREDATOR_POPULATION*PREDATOR_MIGRATION RATE*SL::RANDOM(0.1,0.4); }
)
f I u x Variable MIGRATION_IN {

update Command u2 {
Value -- MIGRATION_NORTH@S + MIGRATION_SOUTH@N + MIGRATION_WEST@E + MIGRATION_EAST@W; }

)
f I u x Var iable MIGRATION NORTH {

update Command u3 { Value = PREDATOR_POPULATION*PREDATOR_MIGRATION_RATE*SL::RANDOM(0.1,0.4); }
)
f I u x Var iable MIGRATION_SOUTH {

update Command u4 { Value -- PREDATOR_POPULATION*PREDATOR_MIGRATION_RATE*SL::RANDOM(0.1,0.4); }
}
f I u x Var iable MIGRATION_WEST {

update Command u5 { Value = PREDATOR_POPULATION'PREDATOR_MIGRATION_RATE*SL::RANDOM(0.1,0.4); }
}
f l ux Variable PREDATORBIRTHS {

update Command u6 { Value = (PREDATOR_POPULATION*PREDATOR_NATALITY); }
}
f I u x Variable PREDATOR_DEATHS {

update Command u7 { Value = (PREDATOR_POPULATION*PREDATOR_MORTAUTY); }
}
Variable PREDATORMIGRATION_RATE {

update Command u8 { Value = Graphl(KILLS_PER_PREDATOR); }
}
Variable PREDATOR_MORTALITY {

update Command u9 { Value = Graph2(KILLS_PER_PREDATOR); }
}
Variable PREDATOR_NATALITY {

update Command ul 0 { Value = Graph3(DEER DENSITY); }
}
s ta te Var iable PREDATORPOPULATION {

init Command i l I { Value = 3000; }
in tegrateCommand111{ Method= Euler; Clamp= True;

Value = PREDATOR_BIRTHS + MIGRATION IN- PREDATORDEATHS- MIGRATION_EAST-
MIGRATION_WEST- MIGRATION_NORTH- MIGRATION_SOUTH; }

}
LUT G raph0 { l i st Data = ((0.0000E+00, 0.0000E+00), (1.0000E+00, 4.0000E-02), ...) }
LUT Graph1 { l is t Data = ((0.0000E+00, 1.0000E+00), (4.0000E-01,7.9500E-01), ...) }
LUT Graph2 { l is t Data = ((0.0000E+00, 1.0000E+00), (1.5000E-01,8.0000E-01), ...) }
LUT Graph3 { l ist Data = ((0.0000E+00, 5.0000E-02), (1.0000E+01,5.0000E-02), ...) }

}

Module PREDATORS_module_PLM25 : PREDATORS_module {
Frame {

Type = Grid;
map impor t Pipe p l { Name = StudyArea; Source = GRASS; MapSet = PLM25; }

}
extends s ta te Variable PREDATOR_POPULATION {

pipe Command i l 1 {
map impor t Pipe p2 { Name = Predator ln i t l ; Source = GRASS; MapSet = PLM25; }

}
}

}

Fig. 2. Study area map for the Patuxent landscape model.

T. Maxwell, R. Costanza /Ecological Modelling 103 (1997) 105 113 113

display a decomposition of the PLM grid frame
over four processors as generated by the SME
driver using a recursive N-section algorithm. Ap-
plication of this model in the Patuxent watershed
is expected to allow extensive analysis of past and
future management options, and will form the
basis for future application to other areas in the
Chesapeake Bay watershed.

8. Conclusions

We believe that effectively managing human
affairs through the next century will require ex-
tremely complex and reliable computer models.
Widespread utilization of modeling environments
supporting graphical, hierarchical/modular design
of distributed simulations will facilitate reliable,
economical model construction. General adoption
of this paradigm will support the development of
libraries of modules representing reusable model
components that are globally available to model
builders, as well as making advanced computing
architectures available to users with little com-
puter knowledge.

References

Acock, B., Reynolds, J.F., 1990. Model Structure and Data
Base Development. In: Dixon R.K., Meldahl R.S., Ruark
G.A., Warren W.G. (Eds.), Process Modeling of Forest
Growth Responses to Environmental Stress. Timber Press,
Portland, OR.

Cook, S., Daniels, J., 1994. Designing Object Systems. Prentice
Hall, New York.

CORBA, 1996. Object Management Group. URL: http://
www.omg.org/.

Costanza, R., Sklar, F.H., White, M.L., 1990. Modeling
coastal landscape dynamics. BioScience 40, 91 107.

ELM, 1995. Everglades Landscape Model. URL: http://
kabir.umd.edu /Glades/ELM.html.

Erich Gamma, R.H., Johnson, R., Vlissides, J., 1995. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Massachusettss.

Fitz, H.C., DeBellevue, E., Costanza, R., Boumans, R.,
Maxwell, T., Wainger, L., 1996. Development of a general
ecosystem model (GEM) for a range of scales and ecosys-
tems. Ecol. Model. 88, 263 297.

Gauthier, R.L., Ponto, S.D., 1970. Designing Systems Pro-
grams. Prentice-Hall, Englewood Cliffs, NJ.

Goodall, D.W., 1974. The Hierarchical Approach to Model
Building. Center for Agricultural Publishing and Docu-
mentation, Wageningen.

Maxwell, T., 1994. Distributed Modular Spatial Ecosystem
Modelling.

Maxwell, T., Costanza, R., 1994. Spatial Ecosystem Modeling
in a Distributed Computational Environment. In: van den
Bergh, J., van der Straaten, J. (Eds.), Toward Sustainable
Development: Concepts, Methods, and Policy. Island
Press, Washington, D.C.

Maxwell, T., Costanza, R., 1995. Distributed modular spatial
ecosystem modelling. Int. J. Comput. Simulation: Special
Issue on Advanced Simulation Methodologies 5 (3), 247-
262.

OGIS, 1996. The OpenGIS Guide. URL: http://ogis.org/
guide/gnidel .htm.

PLM, 1995. Integrated Ecological Economic Modeling. URL:
http://kabir.umd.edu/PLM/PLM Proj.html.

Risser, P.G., Karr, J.R., Forman, R.T.T., 1984. Landscape
Ecology: Directions and Approaches. Illinois Natural His-
tory Survey, Champaign, IL.

Robinson, P., 1996. Hierarchical Object-Oriented Design.
Prentice Hall, New York.

Silvert, W., 1993. Object-oriented ecosystem modeling. Ecol.
Model. 68, 91 118.

Sklar, F.H., Costanza, R., 1991. The Development of Dy-
namic Spatial Models for Landscape Ecology. In: Turner,
M.G., Gardner, R. (Eds.), Quantitative Methods in Land-
scape Ecology. Springer-Verlag, New York, NY.

Zeigler, B.P., 1976. Theory of Modeling and Simulation. Wi-
ley, New York.

Zeigler, B.P., 1990. Object-Oriented Simulation with Hierar-
chical, Modular Models. Academic Press, New York.

