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Abstract 

Creating an effective environment for collaborative spatio-temporal model development will require computational 
systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction 
and archiving/linking of simulation modules; (2) support for graphical, icon-based model construction; (3) transpar- 
ent, seamless support for state of the art distributed computing. The key requirement for this support is the adoption 
of a modeling standard, either in the form of an interface specification language (ISL), or a modular modeling 
language (MML). The ISL supports remote linking of simulation modules developed in disparate languages and 
environments. The MML provides a language standard for the development and archiving of simulation modules. 
Optimally, the implementation of these languages will include seamless links to graphical, icon-based simulation 
environments and distributed computing environments. In this paper we discuss the authors' program to develop and 
implement an MML-based integrated environment designed to provide this support for distributed modular 
spatio-temporal modeling. © 1997 Elsevier Science B.V. 
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I. Introduction 

Protecting and preserving our natural life sup- 
port  systems requires the ability to understand the 
direct and indirect effects of  human activities on 
these systems at multiple space-time scales. Our 
modeling and understanding of  these systems has 
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been largely isolated and unconnected in disci- 
plinary specialties. There is great need for an 
integrated conceptual framework, as well as a 
practical toolbox allowing researchers from many 
disciplines to collaborate effectively to better un- 
derstand the dynamics of  coupled environmental- 
economic systems. Supporting an inter- 
disciplinary research program of  this magnitude 
will require the development of  new modeling 
tools, data bases, and collaborative network infor- 
mation-sharing and simulation environments 
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to allow the linkage o f  existing models and the 
evolution of a new set of modular, multi-faceted, 
adaptive models. In this paper we outline a num- 
ber of these necessary advances and discuss cur- 
rent development efforts in this area. 

2. Supporting collaborative modeling 

Spatially explicit modeling of ecological-eco- 
nomic systems is essential if one's modeling goals 
include developing a relatively realistic description 
of past behavior and predictions of the impacts of 
alternative management policies on future system 
behavior (Risser et al., 1984; Costanza et al., 
1990; Sklar and Costanza, 1991). There exists a 
rich set of research problems associated with the 
implementation of computer based collaborative 
technologies for spatially-articulated ecological 
economic modeling. Three important areas of on- 
going research and development are integrated 
support for: (1) modular, collaborative model de- 
velopment; (2) transparent access to high perfor- 
mance computing resources; (3) graphical display 
and manipulation of model structure and dynam- 
ics; and (4) integrating disparate spatio-temporal 
representations. 

2.1. Collaborative, modular model development 

One of the factors limiting the development of 
ecosystem models in general has been the inability 
of any single team of researchers to deal with the 
conceptual complexity of formulating, building, 
calibrating, and debugging complex models. The 
need for collaborative model building has been 
recognized (Goodall, 1974; Acock and Reynolds, 
1990) in the environmental sciences. Realistic 
ecosystem models are becoming much too com- 
plex for any single group of researchers to imple- 
ment single-handed, requiring collaboration 
between species specialists, hydrologists, chemists, 
land managers, economists, ecologists, and others. 
Communicating the structure of the model to 
others can become an insurmountable obstacle to 
collaboration and acceptance of the model. 

A well-recognized method for reducing pro- 
gram complexity involves structuring the model as 

a set of distinct modules with well-defined inter- 
faces (Gauthier and Ponto, 1970; Goodall, 1974; 
Acock and Reynolds, 1990; Silvert, 1993) Modu- 
lar design facilitates collaborative model construc- 
tion, since teams of specialists can work 
independently on different modules with minimal 
risk of interference. Modules can be archived in 
distributed libraries and serve as a set of templates 
to speed future development. A modeling environ- 
ment that supports modularity could provide a 
universal modeling language to promote global 
collaborative model development. 

2.2. High performance computing 

Tremendous computational resources are re- 
quired to integrate the equations of a large spatial 
model in a reasonable amount of computer time. 
Large models typically require supercomputers or 
parallel/distributed processing for efficient execu- 
tion. This class of models is a near ideal applica- 
tion for parallel processing since a typical model 
consists of a large number of cells that can be 
simulated semi-independently. Each processor can 
be assigned a different subset of cells, and most 
interprocessor communication is nearest-neighbor 
only. Despite their great promise and increasing 
availability, parallel architectures have not found 
much usage in the life sciences. The major barrier 
to wide acceptance of these techniques has been 
the difficulty of programming and debugging 
large parallel programs, and reluctance on the 
part of scientists to invest time in learning new 
languages and architectures 

2.3. Graphical display 

A second step toward reducing model complex- 
ity involves the utilization of graphical, icon- 
based module interfaces, wherein the structure of 
the module is represented diagramatically, so that 
new users can recognize the major interactions at 
a glance. Scientists with little or no programming 
experience can begin building and running models 
almost immediately. Inherent constraints make it 
much easier to generate bug-free models. Built-in 
tools for display and analysis facilitate under- 
standing, debugging, and calibration of the rood- 
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ule dynamics. One major advantage of this graph- 
ical approach to modeling is that the process of 
modeling can become a consensus building tool. 
The graphical representation of the model can 
serve as a blackboard for group brainstorming, 
allowing policy makers, scientists, and stakehold- 
ers to all be involved in the modeling process. 
When applied in this manner the process of creat- 
ing a model may be more valuable than the 
finished product. 

3. Methods for supporting collaborative modeling 

translate modules in other languages into MML 
for archiving and linking. The major advantage of 
this approach is that all modules can be archived 
and executed in a single unifying environment, 
which can provide extensive simulation services 
not found in a loosely coupled heterogeneous 
simulation. The modeling language should facili- 
tate model development and communication be- 
cause it focuses on the issues of interest to the 
modelers while hiding unnecessary or dangerous 
implementation details, and encourages modular, 
hierarchical program design. We will discuss this 
approach for the remainder of this paper. 

There are two major methods for supporting 
collaborative model construction, through imple- 
mentation of a 'module wrapper', and through 
implementation of a 'modular modeling lan- 
guage'. 

3.1. The module wrapper approach 

This approach involves the development of a 
set of 'wrappers' which encapsulate legacy simula- 
tion code modules in order to integrate them into 
a single distributed environment, resulting in a 
'federated' simulation. This wrapper is imple- 
mented as a library of functions (or distributed 
objects) that is embedded in the existing simula- 
tion codes to enable them to 'publish' (and 'sub- 
scribe to') simulation services over the network. 
Each module publishes its set of available services 
using a common high-level interface specification 
language, which is platform and programming 
language independent. The base infrastructure for 
implementing this approach is just becoming 
available with the advent of interoperability spe- 
cifications such as CORBA (CORBA, 1996), and 
OGIS (OGIS, 1996). Significant infrastructure de- 
velopment remains to be done, however, before 
this approach become widely available. 

3.2. Modular modeling language (MML) 

This approach involves the utilization of a spe- 
cialized language to support modular modeling. 
Modules can be developed, archived, and linked 
in this language. Converters can be created to 

4. Properties of a modular modeling language and 
environment 

A modular modeling language (MML) is only 
useful within the context of a modular modeling 
development environment (MMDE). The basic 
properties of a MML and MMDE are outlined 
here. For further reading on object oriented de- 
sign methodology, consider the general references 
(Zeigler, 1976, 1990; Cook and Daniels, 1994; 
Erich Gamma et al., 1995; Robinson, 1996), as 
well as the environmental sciences references in 
Section 2.1. 

4.1. Modular modeling language 

Some of the key properties of a MML include: 
• Simplicity: the language should capture only 

details relevant to the dynamics of the model 
and leave all other computational details to the 
MMDE. 

• Modularity: the separate components of the 
model should be represented in the language as 
a set of self-contained modules with well 
defined inputs and outputs. The module encap- 
sulates it's data and dynamics in the sense that 
it can only be interfaced through it's inputs and 
outputs. 

• Encapsulation hierarchy: each module may in- 
clude (encapsulate) other modules in it's defini- 
tion. The scope of the encapsulated module is 
the encapsulating module; i.e. it can not inter- 
act (connect) directly with modules declared 
outside of the encapsulating module. 



108 T. Maxwell, R. Costanza / Ecological Modelling 103 (1997) 105-113 

• Inheritance hierarchy: modules can subclass 
other modules. This allows modules to inherit 
some of the functionality (data and dynamics) 
of other modules while overriding other func- 
tionality. This property facilitates the construc- 
tion of specialization hierarchies, in which each 
level of inheritance is composed of increasingly 
specialized modules. 

• Connections: the language should include a 
method for declaring connections between 
modules (from output variables to input vari- 
ables). 

4.2. Modular modeling development environment 

Some of the key properties of a MML-based 
development environment include: 
• Graphical interface: the environment should 

provide a graphical interface to the MML, in 
which each element is represented by an icon, 
and inter-element connections are displayed 
graphically. Scientists unfamiliar with the envi- 
ronment should be able to begin building and 
running models almost immediately; the inter- 
face should be largely self-explanatory. 

• Simulation services: the modeling environment 
should provide a number of user-transparent 
simulation services. These services should in- 
clude: (i) modeling toolbox, tools for integrat- 
ing differential equations, performing 
sensitivity analyses, and displaying the model 
output graphically in various forms, as well as 
providing math tools to support model build- 
ing; (ii) network toolbox, tools for automati- 
cally distributing the simulation over a network 
of processors; and (iii) data access/storage utili- 
ties, tools for seamlessly linking to GIS/data- 
bases for simulation data input and output. 

5. Spatial modeling language 

In an attempt to address the conceptual and 
computational complexity barriers to spatio-tem- 
poral model development, we have implemented a 
realization of the MML and MMDE specifica- 
tions (detailed in Section 4) which we call the 
spatial modeling language (SML) and the spatial 

modeling environment (SME). The SML is de- 
scribed in this section, and the SME is described 
in Section 6. 

5.1. Description of the SML 

The spatial modeling language (SML) is a data- 
parallel simulation design language designed to 
support modular simulation by incorporating the 
MML specifications outlined in Section 4.1. It is 
structured as a set of nested object definitions and 
attribute-value declarations. The declarative struc- 
ture of the SML is described in this section, the 
SML infrastructure for handling spatial interac- 
tion is described in Section 6. 

5. I. 1. Object definitions 
The general form of a object definition in SML 

is: 

< modifiers > < objectType > < objectName 

> : < parentObjectName > 

where < objectName > is the name of the object, 
< objectType > is the type of the object, and 
< parentObjectName > is the name of the object 
that this object inherits from. Each command also 
accepts a set of modifiers, which denote special- 
izations of the declared object. Each object decla- 
ration can optionally be followed by a definition 
of the declared object, which is enclosed in brack- 
ets. Object definitions may contain declarations 
and definitions of other objects. 

5.1.2. Attribute-value declarations 
The general form of a attribute-value declara- 

tion in SML is: 

< modifiers > < objectType > < objectName > 

= < value > 

where < objectName > is the name of the object, 
< objectType > is the type of the object, and 
< value > is the value to be associated with the 
attribute. Each declaration also accepts a set of 
modifiers, which denote specializations of the 
declaration. Values can have a number of differ- 
ent formats, including list, equation, number, 
string, etc. 
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5.1.3. SML object types 
The object types supported by the current ver- 

sion of the SML include: 
(1) Module: the module object is the unit of 

encapsulation of the model dynamics. Modules 
are designed to be self-contained archivable sub- 
models, which may interact with other modules 
through well-defined input and output ports. 
Module declarations may be nested to arbitrary 
depth, and modules may inherit from other mod- 
ules. 

(2) Variable: variable objects represent the 
atomic components of a module. Command 
qualifiers can be used to specify specific variable 
sub-classes, such as state variable, flux variable, 
map-dependent parameter, timeSeries, spatially 
interpolated timeSeries, and parameter. 

(3) Frame: a frame object specifies the topology 
of the spatial implementation of a module. 
Frames are discussed in Section 6. 

(4) Connection: a connection object establishes 
a link from an output variable in one module to 
an input variable in another module. 

(5) Input: each module may declare a set of 
input ports. These ports behave as local variables 
within the module, i.e. they appear within the 
module's dynamic equations as variables declared 
within the module. Each port is connected to an 
output variable in another module. At the begin- 
ning of each update event, data is imported 
through each referenced port from the connected 
output variable and remapped (if necessary) into 
the importing module's frame. 

(6) Event: the simulation is driven by a set of 
events. An event object contains a timestamp and 
a list of commands to be executed, sorted by 
dependency. Events are posted to a global list 
which is sorted by timestamp. The events in the 
list are executed sequentially to generate the dy- 
namics of the simulation. When an event is exe- 
cuted the following steps occur: (ii) the global 
simulation time is set equal to the event's times- 
tamp; (ii) the Event's Commands are executed; 
and (iii) the event uses it's schedule object to 
reschedule itself. 

(7) Schedule: the schedule object controls the 
scheduling of Events. Schedules are arranged in a 
hierarchical structure, with variables inheriting 

schedules from their modules and sub-modules 
inheriting schedules from super-modules. At any 
level of the hierarchy a schedule may be re- 
configured, overriding aspects of it's inherited 
schedule. 

(8) Command: the atomic components of an 
event are command objects. Each command ob- 
ject is designed to perform a single 'action'. The 
currently supported command classes include: (i) 
update: update a variable's data structures, either 
by executing a set of equations of by importing 
data from another module; (ii) script: execute a 
script in the shell environment; (iii) pipe: execute a 
pipe operation. 

(9) Pipe: all data input and output is performed 
using pipes. A pipe object links a variable object 
with an external data source/sink/display object. 
pipes exist for: (i) importing data from the GIS or 
database; (ii) archiving data to the GIS or data- 
base; and (iii) displaying data in real time using 
various formats. 

5.2. An SML example 

The SML code in lines 1-49 of Fig. 1 repre- 
sents the declaration and definition of a simple 
module implementing predator dynamics (with 
migration). The line numbers in Fig. 1 were added 
for reference purposes, and are not part of the 
language. The SML code was imported from a set 
of equations generated using a graphical modeling 
tool such as STELLA. The module has a set of 
variable objects (declared with the variable com- 
mand), which can be internal, or input from 
another module (declared with the input modifier, 
as in line 3). All internal variables can serve as 
exports to other modules. Each variable has an 
associated set of command declarations, which 
define the operations that are used to update the 
variable's values (as described in Section 6.4). The 
SME code generator automatically associates 
commands with events, which subsequently drive 
the simulation. The user may override the default 
event structure by defining a set of customized 
events if necessary. 

The SML code in Lines 51-62 of Fig. 1 repre- 
sents the declaration and definition of a module 
that uses subclassing to customize the (previously 
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Fig. 1. An SML example. 

defined) PREDATORS_module by adapting it to 
a specific study area. A frame is declared (lines 
52-55) to specify the topology of the module. The 
initialization command il l  for the predator state 
variable (line 40) is overridden by a map input 
pipe (lines 56-59) in order to specify the initial 
distribution of predators. This is accomplished by 
'extending' the PREDATOR_POPULATION 
state variable declaration (line 56). 

6. Spatial modeling environment 

In an attempt to address the conceptual and 
computational complexity barriers to spatio-tem- 
poral model development, we have implemented a 
realization of the MMDE specification (detailed 
in Section 4) which we call the spatial modeling 
environment (SME) (Maxwell, 1994; Maxwell and 
Costanza, 1994, 1995). The spatial modeling lan- 
guage (SML) forms the core of (SME), which 
links icon-based graphical modeling environments 
with parallel supercomputers and a generic object 
database. This system will allow users to create 
and share modular, reusable model components, 
and utilize advanced parallel computer architec- 
tures without having to invest unnecessary time in 

computer programming or learning new systems. 
The SME is described elsewhere (references 
above) in this paper we discuss only the aspects of 
the SME/SML which support spatial interactions. 

6. I. The S M E  driver 

The SME driver is the distributed object-ori- 
ented simulation environment which incorporates 
the set of code modules that actually perform the 
spatial simulation. The SME code generator will 
convert an SML object hierarchy (typically devel- 
oped using one of the SME/SML graphical model 
development tools) into a C + + object hierarchy 
which is incorporated into the SME driver appli- 
cation. The simulation is executed within the 
SME, which provides numerous simulation ser- 
vices such as transparent distributed computing, 
integrated visualization and analysis tools, and 
integrated GIS and database access. 

6.2. Spatial representations: the PointGrid library 

The PointGrid library (PGL) is a set of C + + 
distributed objects designed to support computa- 
tion on irregular, distributed networks and grids. 
It contains the set of objects that the SME driver 



T. Maxwell, R. Costanza /Ecological Modelling 103 (1997) 105 113 111 

uses to build spatial representations. The PGL 
object structure is a mapping of (a subset of) an 
early version of the OG1S Open Geodata Model 
(OGIS, 1996) to C + +.  

The PGL supports spatial representations as 
sets of Point objects (see below) with links. It 
transparently handles: (1) creation and decompo- 
sition (over processors) of Point Sets; (2) mapping 
of data over and between Point Sets; (3) iteration 
over Point Sets and Point Sub-Sets; (4) data ac- 
cess and update at each Point; and (5) swapping 
of variable-sized PointSet boundary (ghost) re- 
gions. Some of the important PGL classes are: 
• Point: corresponds to a cell in a GIS layer. 
• Aggregated point: corresponds to a cell in a 

coarser resolution GIS layer. 
• PointSet: a set of Points with (optional) links 

(grid, network, tree, population, etc.). 
• DistributedPointSet: a PointSet distributed 

over processors with variable-sized boundary 
(ghost) layers. 

• Coverage: one-to-one mapping from a Dis- 
tributedPointSet to the set of floating point 
numbers. 

6.3. Modules and frames 

Each module that is declared in the SML has a 
frame object that is used to configure the spatial 
representation of the module in the driver. All 
variable objects belonging to a module inherit the 
module's frame. The SME provides a set of avail- 
able frame types, which currently includes 2D 
grids, networks, and trees. The user specifies a 
frame type and a frame configuration map (to be 
read from the GIS at runtime) for each module. 
The frame object is implemented in the driver as a 
DistributedPointSet object, i.e. each frame has a 
list of Point objects (POs), with each PO corre- 
sponding to a cell in the frame's map region, 
which includes a partition of the study area han- 
dled by the current processor plus a communica- 
tion buffer zone. Every frame object in the SME 
includes methods for interacting with and trans- 
ferring data to/from other frames. The SML spa- 
tial variable object is implemented as a coverage 
object, i.e. each variable object in the driver con- 
tains a mapping from it's (module's) frame to the 
set of floats. 

6.4. Defining spatial interactions in the SML 

Dynamic variables in the SML fall into two 
general classes: (1) spatial variables, which (at any 
point in time) have a different value at each cell of 
the frame; and (2) non-spatial variables, which 
have a single value in all cells. All operations on 
spatial variables (e.g. command u2 in Fig. 1, lines 
12-14) are executed in a 'data parallel' mode. 
This means that an operation defined as A + B 
(where A, and B are spatial variables) results in a 
separate addition operation for each cell of the 
frame, using the variable values associated with 
that cell. 

Defining the intercellular interactions requires 
an additional syntax. In any SML equation, a 
term defined as S@(x, y) (where S is a spatial 
variable with a grid frame, and x and y are 
integers) represents the value of S x cells to the 
north and y cells to the east. This syntax has a 
similar meaning in other frames. Fig. 1, line 12 
shows an example of predator migration dynam- 
ics defined using this notation. We are currently 
developing an additional set of operators to de- 
clare common spatial operations, such as convo- 
lutions and spatial averages. 

7. Patuxent landscape model example application 

The current applications of this framework in- 
clude the patuxent landscape model (PLM), 
(PLM, 1995) and the everglades landscape model 
(ELM, 1995). The PLM is a regional landscape 
simulation model that can address the effects of 
different management and climate scenarios on 
the ecosystems in the Patuxent watershed. The 
study area for the PLM is shown in Fig. 2. The 
PLM contains about 6000 spatial cells each con- 
taining a dynamic simulation model (based on the 
GEM model (Fitz et al., 1996)) of approximately 
20 state variables partitioned into 14 modules. It 
uses two frames, a 2D grid frame covering the 
active study area (for modules such as Con- 
sumers, Nitrogen, Hydrology, Macrophytes, De- 
tritus, etc.) and a tree-network frame for the River 
modules (covering the gray areas in Fig. 2). The 
four rectangles overlaid on the map in Fig. 2 
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Module PREDATORS_module { 

input Variable DEERDENSITY { } 

Var iable KILLS_PER_PREDATOR { 
update Command u0 { Value = Graph0(DEER_DENSITY); } 

} 
f I u x Var iable MIGRATION_EAST { 

update Command u I { Value = PREDATOR_POPULATION*PREDATOR_MIGRATION RATE*SL::RANDOM(0.1,0.4); } 
) 
f I u x Variable MIGRATION_IN { 

update Command u2 { 
Value -- MIGRATION_NORTH@S + MIGRATION_SOUTH@N + MIGRATION_WEST@E + MIGRATION_EAST@W; } 

) 
f I u x Var iable MIGRATION NORTH { 

update Command u3 { Value = PREDATOR_POPULATION*PREDATOR_MIGRATION_RATE*SL::RANDOM(0.1,0.4); } 
) 
f I u x Var iable MIGRATION_SOUTH { 

update Command u4 { Value -- PREDATOR_POPULATION*PREDATOR_MIGRATION_RATE*SL::RANDOM(0.1,0.4); } 
} 
f I u x Var iable MIGRATION_WEST { 

update Command u5 { Value = PREDATOR_POPULATION'PREDATOR_MIGRATION_RATE*SL::RANDOM(0.1,0.4); } 
} 
f l ux  Variable PREDATORBIRTHS { 

update Command u6 { Value = (PREDATOR_POPULATION*PREDATOR_NATALITY); } 
} 
f I u x Variable PREDATOR_DEATHS { 

update Command u7 { Value = (PREDATOR_POPULATION*PREDATOR_MORTAUTY); } 
} 
Variable PREDATORMIGRATION_RATE { 

update Command u8 { Value = Graphl(KILLS_PER_PREDATOR); } 
} 
Variable PREDATOR_MORTALITY { 

update Command u9 { Value = Graph2(KILLS_PER_PREDATOR); } 
} 
Variable PREDATOR_NATALITY { 

update Command ul  0 { Value = Graph3(DEER DENSITY); } 
} 
s ta te  Var iable PREDATORPOPULATION { 

init  Command i l  I { Value = 3000; } 
in tegrateCommand111{ Method= Euler; Clamp= True; 

Value = PREDATOR_BIRTHS + MIGRATION IN- PREDATORDEATHS- MIGRATION_EAST- 
MIGRATION_WEST- MIGRATION_NORTH- MIGRATION_SOUTH; } 

} 
LUT G raph0 { l i st Data = ( ( 0.0000E+00, 0.0000E+00 ), ( 1.0000E+00, 4.0000E-02 ), ...) } 
LUT Graph1 { l is t  Data = ( ( 0.0000E+00, 1.0000E+00 ), ( 4.0000E-01,7.9500E-01 ), ...) } 
LUT Graph2 { l is t  Data = ( ( 0.0000E+00, 1.0000E+00 ), ( 1.5000E-01,8.0000E-01 ), ...) } 
LUT Graph3 { l ist  Data = ( ( 0.0000E+00, 5.0000E-02 ), ( 1.0000E+01,5.0000E-02 ), ...) } 

} 

Module PREDATORS_module_PLM25 : PREDATORS_module { 
Frame { 

Type = Grid; 
map impor t  Pipe p l  { Name = StudyArea; Source = GRASS; MapSet = PLM25; } 

} 
extends s ta te  Variable PREDATOR_POPULATION { 

pipe Command i l  1 { 
map impor t  Pipe p2 { Name = Predator ln i t l  ; Source = GRASS; MapSet = PLM25; } 

} 
} 

} 

Fig. 2. Study area map for the Patuxent landscape model. 
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display a decomposition of the PLM grid frame 
over four processors as generated by the SME 
driver using a recursive N-section algorithm. Ap- 
plication of this model in the Patuxent watershed 
is expected to allow extensive analysis of past and 
future management options, and will form the 
basis for future application to other areas in the 
Chesapeake Bay watershed. 

8. Conclusions 

We believe that effectively managing human 
affairs through the next century will require ex- 
tremely complex and reliable computer models. 
Widespread utilization of modeling environments 
supporting graphical, hierarchical/modular design 
of distributed simulations will facilitate reliable, 
economical model construction. General adoption 
of this paradigm will support the development of 
libraries of modules representing reusable model 
components that are globally available to model 
builders, as well as making advanced computing 
architectures available to users with little com- 
puter knowledge. 

References 

Acock, B., Reynolds, J.F., 1990. Model Structure and Data 
Base Development. In: Dixon R.K., Meldahl R.S., Ruark 
G.A., Warren W.G. (Eds.), Process Modeling of Forest 
Growth Responses to Environmental Stress. Timber Press, 
Portland, OR. 

Cook, S., Daniels, J., 1994. Designing Object Systems. Prentice 
Hall, New York. 

CORBA, 1996. Object Management Group. URL: http:// 
www.omg.org/. 

Costanza, R., Sklar, F.H., White, M.L., 1990. Modeling 
coastal landscape dynamics. BioScience 40, 91 107. 

ELM, 1995. Everglades Landscape Model. URL: http:// 
kabir.umd.edu /Glades/ELM.html. 

Erich Gamma, R.H., Johnson, R., Vlissides, J., 1995. Design 
Patterns: Elements of Reusable Object-Oriented Software. 
Addison-Wesley, Reading, Massachusettss. 

Fitz, H.C., DeBellevue, E., Costanza, R., Boumans, R., 
Maxwell, T., Wainger, L., 1996. Development of a general 
ecosystem model (GEM) for a range of scales and ecosys- 
tems. Ecol. Model. 88, 263 297. 

Gauthier, R.L., Ponto, S.D., 1970. Designing Systems Pro- 
grams. Prentice-Hall, Englewood Cliffs, NJ. 

Goodall, D.W., 1974. The Hierarchical Approach to Model 
Building. Center for Agricultural Publishing and Docu- 
mentation, Wageningen. 

Maxwell, T., 1994. Distributed Modular Spatial Ecosystem 
Modelling. 

Maxwell, T., Costanza, R., 1994. Spatial Ecosystem Modeling 
in a Distributed Computational Environment. In: van den 
Bergh, J., van der Straaten, J. (Eds.), Toward Sustainable 
Development: Concepts, Methods, and Policy. Island 
Press, Washington, D.C. 

Maxwell, T., Costanza, R., 1995. Distributed modular spatial 
ecosystem modelling. Int. J. Comput. Simulation: Special 
Issue on Advanced Simulation Methodologies 5 (3), 247- 
262. 

OGIS, 1996. The OpenGIS Guide. URL: http://ogis.org/ 
guide/gnidel .htm. 

PLM, 1995. Integrated Ecological Economic Modeling. URL: 
http://kabir.umd.edu/PLM/PLM Proj.html. 

Risser, P.G., Karr, J.R., Forman, R.T.T., 1984. Landscape 
Ecology: Directions and Approaches. Illinois Natural His- 
tory Survey, Champaign, IL. 

Robinson, P., 1996. Hierarchical Object-Oriented Design. 
Prentice Hall, New York. 

Silvert, W., 1993. Object-oriented ecosystem modeling. Ecol. 
Model. 68, 91 118. 

Sklar, F.H., Costanza, R., 1991. The Development of Dy- 
namic Spatial Models for Landscape Ecology. In: Turner, 
M.G., Gardner, R. (Eds.), Quantitative Methods in Land- 
scape Ecology. Springer-Verlag, New York, NY. 

Zeigler, B.P., 1976. Theory of Modeling and Simulation. Wi- 
ley, New York. 

Zeigler, B.P., 1990. Object-Oriented Simulation with Hierar- 
chical, Modular Models. Academic Press, New York. 


