
Environmental Modelling & Software 15 (2000) 169–177
www.elsevier.com/locate/envsoft

Design of multi-paradigm integrating modelling tools for
ecological research

Ferdinando Villa*, Robert Costanza
Institute for Ecological Economics, University of Maryland, Center for Environmental Science, P.O. Box 38, Solomons, MD 20688, USA

Received 25 February 1999; accepted 21 July 1999

Abstract

Integrating modelling tools allow different modelling paradigms to coexist and cooperate in the same simulation model. The
need for such tools in ecological modelling is due to the high level of complexity of ecological and environmental decision-making
problems, their multiple scales of description, the diversity of the available approaches, and the size and heterogeneity of the
available datasets. This article discusses problems and perspectives in developing integrating modelling tools and introduces the
Simulation Network Interface (SNI), a software package for easy coordination of different existing simulation models. The interface
allows the coordination of independent simulation models residing on different machines into higher-level, multi-paradigm, distrib-
uted simulation, with minimal recoding efforts of existing models. The interface can also be used to easily provide a remote interface
to simulation or data retrieval services running on different architectures. As examples of its application, we describe three ongoing
projects using the SNI: (1) the integration of Swarm, an agent-based simulation toolkit, with the Spatial Modelling Environment
(SME), a process-based spatial simulation toolkit; (2) the straightforward implementation of a GIS-based spatial data repository for
network-based data retrieval and manipulation; and (3) a network-based calibration service for complex simulation models. 2000
Elsevier Science Ltd. All rights reserved.

Keywords:Multi-paradigm ecological modelling; Remote simulation control; Simulation interface design; Model coordination

Software availability
Name of software: Simulation Network Interface (SNI)
Related software: Swarn/SME interface classes

(http://iee.umces.edu/~villa/swarmsme)
Online documentation: http://iee.umces.edu/~villa/sni
Developer: Ferdinando Villa
Contact information: Institute for Ecological Econom-

ics, University of Maryland, P.O. Box 38, Solo-
mons, MD 20688, USA. Tel.:+1-410-326-7446;
fax: +1-410-326-7354; email: villa@cbl.umce-
s.edu

Year first available: 1998
Hardware required: Unix or Linux workstation for the

server side; client library is portable to Intel and
Macintosh PCs

Software required: C/C++ compiler. Java and Tel
development kits are optional. Tcl and Expect
libraries are required to compile the SNI server

* Corresponding author.

1364-8152/00/$ - see front matter 2000 Elsevier Science Ltd. All rights reserved.
PII: S1364-8152 (99)00032-8

Program language: Server: C++. Client library: C, Java.
Easily portable to other common scripting lang-
uages (Tcl, Perl, Python)

Program size: 1.5 MB uncompressed tar archive.
Library and executable sizes depend on platform

Availability: Licensed through the GNU General Public
License (GPL) and available free in source form
for all non-commercial purposes

1. Introduction

Environmental and ecological simulation modelling
has reached a stage where a variety of approaches are
available to study problems defined at different scales
of time, space and complexity. Each of the dominant
modelling approaches has stimulated the development of
software tools that allow one to simulate specific systems
by assembling generic “building blocks” modelled after



170 F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

the main concepts of one approach. This is the case, for
example, of individual-based modelling tools
(DeAngelis and Gross, 1992; Minar et al., 1996) and
spatially-explicit landscape modelling (Costanza et al.,
1990; Maxwell and Costanza, 1997a,b).

The increasing complexity and multidisciplinarity of
environmental research and management problems, the
spatial and cultural delocalization of research groups,
and the increasing recognition of the need for a multi-
plicity of scales to be considered at the same time, are
reasons for the need to integrate different modelling
approaches into higher-level simulation models. For
example, predictive modelling of the evolution of land
use under different management scenarios requires both
a process-based landscape dynamics model and an indi-
vidual-based model of the stakeholder community to
coexist and interact.

Model integration is also a means of developing suc-
cessful collaborative research projects. Since different
models are typically developed by different research
groups, the availability of easy-to-use integrating tools
encourages collaborative development of ideas and
approaches, facilitating at the same time the identifi-
cation of common research endeavours using existing
models.

The importance of integrative, collaborative tools in
an increasingly complex modelling scenario has also less
obvious justifications. In the case of ecological model-
ling, there is the distinct danger of tools preventing inno-
vation. Ecological science needs new concepts to for-
malize and understand the complexity of nature.
Modelling approaches can be thought of as providing
metaphors which are relevant in this regard (Villa,
1992). It is thus very important that tools do not con-
strain the researcher’s thinking space within a specific
view of natural complexity, but rather allow free space
for thought by endorsing knowledge models which allow
flexibility and reorganization. Complex computer-based
modelling tools can make the use of existing approaches
easier, but they can also make the development of new
approaches and ideas more difficult, because of the con-
straints imposed by the approach or the interface.
Developing integrative tools is a way to add flexibility
and potential for reorganization without losing the con-
venience and power of existing modelling tools.

In this paper we describe an approach to the inte-
gration of different independent models through a client–
server approach which we have denominated Simulation
Network Interface (SNI). The approach allows different
simulation models, running on potentially different
machines, to communicate through the network with a
“master” coordinating model or interface, with minimal
coding efforts. High-level, integrated simulation pro-
grams coordinating different concurrent simulations can
be simply developed using the SNI Application Pro-
gramming Interface (API). The system can be used,

unmodified, to develop a variety of services, including
the implementation of web-based simulation interfaces,
data retrieval systems, and remote model calibration ser-
vices. In the following, the SNI is described and real-
life examples of the applications listed above are
briefly illustrated.

2. The Simulation Network Interface

The rationale underlying the design of the SNI is the
need of interacting and exchanging data between differ-
ent simulation programs on heterogeneous, possibly
remote machines through a simple set of calls. A key
priority in its development was that “compliant” simul-
ation models (i.e., models that can be coordinated
remotely through the SNI) can be implemented in any
language, with no need to link additional libraries, and
that the recoding effort needed when adapting legacy
models be small, or none at all. In fact, the complexities
of the network interaction are entirely ignored by the
programmer of the model, who simply concentrates on
providing models, when necessary, with a command-line
interactive interface which is used by the SNI server to
control the simulation. Most models can be adapted to
the SNI requirements with a few lines of code and do
not require any additional libraries or programming
tools. This allows immediate interoperability between
old and new models without having to recode or signifi-
cantly modify the old model. These design requirements
are in contrast with the complexities of other current,
general interoperability solutions like CORBA (OMG,
URL) or Globus (Foster and Kesselman, 1997), whose
adoption inevitably involves steep learning curves and
requires substantial redesign of applications along with
the installation of sophisticated and complex software
infrastructure.

In the SNI approach, we distinguish “master” appli-
cations, which usually provide simulation scheduling
and coordination, from “slave” simulation programs that
are run by a remotely controlled program (the SNI
server) through their command-line interface. Only mas-
ter models need to use SNI client library calls (simple
functions available in a variety of common programming
languages) to control and coordinate remote simulations;
“slave” models typically require no redesign other than
the addition, when necessary, of a command-line inter-
face. The latter feature is simple to implement, does not
rely on any SNI-specific functions, and is a generally
desirable and useful feature for most simulation models.

The Simulation Network Interface is implemented
through two software components, theSNI serverand
theSNI client library. Both implement and use thesimul-
ation network protocol(SNP), a macro language trans-
parent to the user, allowing communication and data
transfer between independently run simulation programs.



171F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

The SNI server is a program residing on any host
machine where simulation programs designed to be
coordinated are run. “Master” simulation programs wish-
ing to interact with a remote simulation will invoke SNI
client library routines to start the SNI server on the
remote machine. After access authentication, the SNI
server will locate the required simulation program and
run it. The operation of the slave simulation program is
then controlled remotely by the master program through
client calls to the server, which will in turn communicate
the commands to the simulation program and return
results, data and status information back to the master.

Fig. 1 illustrates an example scenario where two
simulation programs and one GIS-based spatial database
are scheduled and coordinated through the SNI by a
master simulation driver. In the example, all programs
reside on independent, network-connected host
machines. Hosts 2, 3 and 4 run the SNI server, a program
controlling different programs on each host. On host 2,
the model is an agent-based simulation controlled by the
master program on host 1. On host 3, the model is a
grid-based dynamic landscape model, acting both as a
slave (controlled by the model on host 1) and as a master
(controlling the GIS on host 4). Host 4 runs a Geographi-
cal Information System (GIS) controlled by the SNI ser-
ver through its command-line interface. The simulation
program on host 3 also uses the SNI client library to
connect to host 4 and retrieve lansdcape data from the
GIS database. On host 1, a “master” program uses the
SNI client library to schedule and coordinate the data
exchange between simulation programs and the GIS,
invoking the necessary actions from different programs
according to the course of the coordinated simulation.
The same scenario could run on one machine, running
multiple copies of the SNI server, with no modification
of the source code for all models. The master program
on host 1 could run on a UNIX workstation as well as on
a PC, or from a Java applet in a Web browser, allowing

Fig. 1. A possible scenario with two simulation models and one GIS
system cooperating through the SNI.

interoperability between different platforms and
operating systems.

To be usable within a scenario like the one in Fig. 1,
“slave” programs only need to comply with a few simple
rules. Through the SNI client library, master programs
instruct remote SNI servers to control other programs
through a command-line interface of the same kind used
for human interaction. Coordinated “slave” applications
just need to be able to perform their basic operations
(like stepping the simulation or outputting data to the
terminal) as a response to a command issued by the user
at the simulation program’s prompt. The SNI server
transparently replaces an interactive user and controls
the simulation through the command-line interface.
Error, warning, and informational messages are output
to the terminal according to a simple, flexible syntax.
The SNI server filters such messages from the program’s
output, storing them for access and notification in the
master program. See the SNI documentation (Villa, 1998
and online) for the operational details of model inte-
gration.

Master programs (those controlling the scheduling of
the slave programs) use SNI client library functions to
control and access the dataspace of the coordinated
simulations. As explained in more detail later, the SNI
Application Programming Interface is simple to
implement in most languages, and is available at the
moment in C and Java.

A macro language (the SNI protocol: see Villa, 1998)
is used internally in the SNI architecture to communicate
with the server, transmit commands to slave programs
and retrieve data and status information. Client calls
invoked by a master program use the SNI protocol to
invoke actions from the SNI server. As an answer, the
server runs programs, interpreting and storing their status
and their output when commands are issued to them. As
mentioned, error and warning messages are filtered by
the server and organized for subsequent notification and
retrieval in federated programs through SNI protocol
calls.

2.1. The SNI architecture

Fig. 2 illustrates schematically the SNI components.
The different components and operations of the SNI
architecture are described in more detail in the follow-
ing.

2.1.1. Host authentication and server startup
Client library routines are used to connect to remote

hosts where the SNI server has been installed. Upon
request, the UNIXinetd service daemon starts the server
which performs a set of authentication operations. The
configuration of the SNI server on each host allows host-
based authentication (with lists of allowed and denied
hosts and domains) and password-protected user-based



172 F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

Fig. 2. A detailed scheme of the SNI operations. On the client side,
some functions from the base C API and two hypothetical tool-specific
APIs are shown. On the server side, a diagram of the SNI workspace
illustrates the arrangement of “slave” simulations in projects, including
documentation and interface specifications.

authentication with different access privileges. Different
access privileges to specific projects, according to which
host and user are connecting, are supported, in order to
allow widespread access to “demo” models as well as
selective access to resource-critical simulation services
located on the same host.

2.1.2. Workspace management
The SNI server manages a “workspace” (mapped on

a directory tree in the filesystem of the host machine)
where SNI-enabled “slave” models are organized into
higher-level collections called “projects”, as illustrated
in Fig. 2. Projects group together models of similar scope
and application, using the same interface (see below) and
sharing some high-level documentation. Through SNI
client library calls, master programs can obtain lists of
the projects available on the host (based on their access
privileges) and lists of the models within a particular
project. Documentation can be retrieved in textual form
for both the project and each particular model within it.
We are successfully using the eXtensible Markup Lang-
uage (XML: Harold, 1998) to structure documentation
for projects and models in the SNI workspace.

2.1.3. Interface selection
Simulation programs created with the same tool (e.g.,

SME: Maxwell and Costanza, 1997b; Swarm: Langton
et al., URL) usually employ similar startup, initializ-
ation, and interaction protocols. The SNI server needs
to know how to start, initialize and run each particular
model in order to make its remote operation easy and
consistent. The set of informations needed to perform
these tasks (such as the format of the command line used
to start the program, the user prompt employed by the
interface, etc.) are grouped into an interface specification
and stored as a named unit in the server configuration

file. The name of the interface is stored in a file in each
project’s workspace, so that the proper interface can be
loaded in the server automatically upon project selection.
This way, the implementor of the simulation program is
free to employ custom rules, commands, and program
invocation details, and will only need to specify these
details once for each simulation toolkit supported. Inter-
face names can be read through SNI calls in order to
provide interface-specific remote services to SNI-con-
trolled programs: for example, generic graphical inter-
face tools (such as the Collaborative Modeling Environ-
ment, CME: Villa, 1997b; Voinov et al., 1999) can
provide a Graphical User Interface (GUI) for SNI-con-
trolled models, selecting the right interface for the tool
upon project selection. Interface specifications can be
made flexible and configurable by using “server vari-
ables”, named variables whose values are set by master
programs through SNI client calls, and are macro-substi-
tuted in interface specifications at the time of use.

2.1.4. Remote control of slave programs
After a simulation project, model and interface are

selected among those known to the server, the model
driver is started and its standard input and output streams
are connected to a pseudo-terminal controlled by the SNI
server. Client routines are then used to submit com-
mands and retrieve the program’s answers through the
SNI protocol. Multiple connections to the same host are
served by independent instances of the SNI server, each
of which can employ different interfaces to access differ-
ent projects and models. The Application Programming
Interface (see below) provides generic functions to sub-
mit commands to the model driver and retrieve its
answer in a variety of formats, as well as checking its
error output. Exceptional behaviours such as model
driver crashes or timeouts are intercepted and notified to
the master program.

2.1.5. Data transfer
Data transfer within the SNI architecture involves two

processes: communication of data between simulation
program and SNI server, and communication between
SNI server and SNI client calls. Different methods,
implementing different levels of efficiency and com-
plexity, are available within the SNI framework to trans-
mit data bi-directionally between the server and the mas-
ter simulation program. In the simplest case, data in
ASCII form are output on the program’s command line
and read by the server. This is usually efficient enough
to transfer even relatively large amounts of data from
the simulation to the server. Different encoding methods
can be used to optimize the efficiency of data transfer
when the amount of data is very large. Simple run-length
encoding of the command-line output is often an
adequate way of obtaining efficient transfer of large data
items and involves a minimal programming overhead.



173F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

The SNI is distributed with functions implementing sev-
eral encoding algorithms, to be used within the slave
simulation program if necessary. The server can recog-
nize data encoded with any such methods and translate
them appropriately.

The transfer of data across the network between the
SNI server and the client routines in the master simul-
ation can use different encoding schemes according to
the nature and amount of data to transfer. Issues of data
transfer efficiency have different importance according
to the size of the datasets and the efficiency of the net-
work connection. The selection of the best encoding
algorithm is done in the SNI server in order to optimize
the trade-off between the time required for encoding and
the time required for transmission. The encoding algor-
ithms are used transparently so that client libraries can
send and receive data in raw form. Different client func-
tions are available to retrieve and send data in the form
of single values, lists, andn-dimensional arrays of
integer and floating point values.

2.1.6. Application Programming Interface (API)
Although the core set of client API functions provided

with the SNI toolkit can drive any SNI-compliant pro-
gram and exchange data with it, the most productive
approach to the use of SNI-coordinated applications is
usually to write a set of specific client routines for each
particular simulation tool, encapsulating tool-specific
concepts so that the additional set of routines behaves
exactly like a local simulation model. This is very easy
to do using only the core SNI API, which implements
generic command submission, retrieval of results, and
transfer of data. As an example, specific API functions
can be written for a simulation tool to step the simul-
ation, retrieve the values of variables, or specify model
parameters, as shown in Fig. 2. The tool-dependent API
implementation is usually very small and can be written
in any language able to access one of the core API
implementations. The ANSI C implementation of the
core API can be used in a variety of language environ-
ments such as C, C++, Objective-C, Tcl, Perl, Python,
Eiffel. An object-oriented, native Java implementation is
also included with the tool distribution, suitable for use
with Java applications and within Java-enabled Internet
browsers. Detailed examples of tool-specific APIs are
described in the SNI documentation (Villa, 1998).

The reliance on a command-line approach for slave
simulation programs makes it easy to exploit the poten-
tial for intermediate processing of data and advanced
simulation control coming from the use of widely avail-
able integrated language interpreters, such as Tcl
(Ousterhout, 1994), Perl (Wall et al., 1996), or Python
(Lutz, 1996), as a toolkit to develop command-line inter-
faces for the simulation programs. By using these sim-
ple, yet full-featured languages, SNI-based applications
can ask the “slave” simulations to perform very complex

pre- and post-processing tasks, by submitting the corre-
spondent language code to the program through the
SNI server.

2.2. Applications of the SNI

By virtue of the “naivety” of the approach, which only
imposes minimal constraints on cooperating programs,
the SNI architecture is suitable to a variety of useful
applications. The following is a discussion of its possible
uses in the current implementation.

2.2.1. Remote simulation services
The SNI is a natural choice to develop remote inter-

faces to simulation programs. By using only the SNI cli-
ent functions, client programs running on simple per-
sonal computers can drive and display data from
simulations running on remote, more powerful worksta-
tions. The computation service is kept conveniently sep-
arate from the interface. The Java implementation of the
SNI client libraries is being used at the University of
Maryland for the development of simulation interfaces
running as applets within Internet browsers for edu-
cational purposes (Maxwell et al., URL).

2.2.2. Development of coordinated simulation models
Two approaches to the integration and coordination

of different simulation models are possible. The inte-
gration of different models can be performed at the
executable level or at the language level. In the latter
case, each separate model is recoded into a common lan-
guage framework. This enforces modularity, scalability,
and integration among model components, since each
model needs to be expressed within the same semantics.
The advantages of this approach in terms of consistency
and potential for further development of models are
obvious. Nevertheless, keeping such a framework gen-
eral enough to be suitable to multi-paradigm modelling
is not trivial; the implementation details are likely to be
so overwhelming to require a complete rewrite of most
existing models. Another problem comes from the lack
of realism implicit in the assumption that, even in the
case that an entirely general semantics could be defined,
a sufficient number of researchers would be willing to
adopt it, in view of their different culture, needs, and
ways to conceptualize the problems. What is more
important, proposed standards for such languages are
just being developed and implementations are not yet
available (Fritzson and Engelson, URL). Other available
or proposed languages are restricted to more specific
modelling paradigms (Maxwell and Costanza, 1997a).

The approach implemented in the SNI works at the
executable level, using existing models implemented as
separate, “federated” executable programs. This has the
advantage of being easy to implement and better suited
to the reuse of existing running code. Programs do not



174 F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

have to adhere to any particular conceptual structure to
be usable within the SNI. One of the programs acts as
a “master” and supplies the scheduling and scale trans-
lation required to effectively coordinate a multi-para-
digm simulation. A variety of schemes can be
implemented. In the simplest, a simulation program con-
trols another, retrieving and modifying its dataspace and
stepping the remote simulation as an additional action
in its own schedule of events. More complicated scen-
arios can be implemented by writing specific “driver”
programs which control a federation of models and
organize the transfer of data and, when necessary, their
cross-scale translation. In all cases, such programs are
simple to write with the SNI API, and open new collab-
orative horizons to existing simulation models where the
resources for a language-level integration are missing.

2.2.3. Implementation of data servers
Data can be thought of as the simplest model of a

phenomenon, embodying the lowest amount of added
knowledge, but still dependent on assumptions, scale
choices, and an abstract model of reality which inspires
their selection, measurement, and collection. In view of
this fundamental continuity it seems appropriate to view
a data server as an implementation of the simplest mod-
elling paradigm, which in general needs explicit coordi-
nation with simulation tools to be useful in the context
of a multi-paradigm simulation model. There are many
ways to implement remote data servers which are parti-
cularly suited to ecological simulation, like object-ori-
ented database servers or network-based data reposi-
tories. The SNI interface can be used to provide remote
control functionalities to programs like Geographical
Information Systems (GIS), so that cooperating pro-
grams can access GIS services through the same inter-
face used for accessing the simulation services. An
example of this is illustrated in the next section.

3. Examples

3.1. Integration of Swarm with the Spatial Modelling
Environment

Two of the major paradigms now prevailing in eco-
logical simulation are individual-based simulation mod-
elling (DeAngelis and Gross, 1992) and large-scale pro-
cess-based spatial modelling (Costanza et al., 1990;
Voinov et al., 1999). In both cases a number of software
tools are available to define, develop and run simulation
models. A software system supporting the individual-
based abstraction is Swarm (Minar et al., 1996; Langton
et al., URL), developed by Chris Langton and colleagues
at the Santa Fe Institute. In the Swarm framework, the
modeller uses the conceptual structures of the object-
oriented Objective-C language to define the behaviour

of the individual agents involved in the simulation.
Agents can be of different kinds, e.g., observer agents
are used to “probe” other agents, and space agents
implement a virtual landscape for other agents to move
in. A Swarm simulation program creates a set of collec-
tions (swarms) of agents and schedules their actions at
every step of the simulation.

The Spatial Modelling Environment (SME: Maxwell
and Costanza, 1997b; Maxwell et al., URL) translates
process-based dynamic models expressed in common
formats like STELLA (Costanza et al., 1998) into an
intermediate Modular Modelling Language (MML:
Maxwell and Costanza, 1997a) representation. This rep-
resentation is then translated into C++ and linked with
the spatially-explicit objects in the SME library to create
a landscape model with multiple resolution views of the
same rasterized physical space, with a locally para-
meterized instance of the original “unit” model running
in every raster cell.

While each of the systems is useful on its own, the
synergistic power coming from their federation is obvi-
ous. Individual Swarm agents can observe and influence
the evolution of the dynamic SME landscape, each with
a potentially different perception and influence on the
landscape. For example, Swarm agents could represent
individual deers, families, stakeholders and managers,
living and operating in different ways and with different
perception of the changes in the landscape, whose pro-
cess-based dynamics could be simulated by an SME
model.

As a first step in integrating the two approaches, a
client API for the SME driver has been written in C,
using the core SNI API, to provide a set of functions
which can drive a remote SME simulation implementing
the SME concepts directly. Since SME simulation pro-
grams already incorporate a command-line interface
based on the Tcl language (as described in Villa, 1997c),
no changes are needed to make them compliant with the
SNI requirements. The SME interface was specified in
the server configuration file listing details of how the
programs are to be invoked, the prompt string they out-
put, and so on.

The Swarm module acts as the master simulation and
provides the scheduling for the SME landscape model.
To allow this, a Swarm class to represent a SME-driven
dynamic space was derived by the simple two-dimen-
sional space classes already implemented in Swarm,
using Swarm’s Objective-C API and integrating the
SME-specific C functions. This new space represents a
dynamic, multiple-resolution landscape with variables
whose values change in time, and is initialized with the
host, project, and model names corresponding to the
SNI-controlled SME model. Subclasses of the dynamic
space class are derived for different SME models. Upon
startup, the (possibly remote) SME model is started and
two-dimensional Swarm grids are created to represent



175F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

each variable in the spatial simulation. Swarm agents can
access the value of each variable at every site of the
landscape and ask the SME simulation to provide stat-
istics about particular aspects of the landscape (like the
values of spatially distributed variables). Data transfer
between SME space and Swarm agents can be scheduled
automatically after every step of the spatial simulation
or performed on demand. Two-way transfer of data
allows SME state variables and parameters to be modi-
fied by Swarm agents. Other functions available through
the Swarm–SME space class are used to control the flow
of the SME simulation, performing new steps according
to the scheduling determined on the Swarm side.

Since the SME runs a command-line interpreter
implemented as an extension to the Tcl language (as
explained in Villa, 1997c), new functions returning
aggregated or post-processed data about the landscape
can be implemented in Tcl directly without the need to
modify the SME model. The SME-specific API has
functionalities to submit the definition of new function
to the SME Tcl interpreter from the client side.

The Swarm–SME integration class are available
through the Swarm code repository or by contracting the
first author.

3.2. A remote spatial data server

As mentioned above, the availability of a remote ser-
ver for processing and retrieving spatial data is useful
for both providing remote interfaces to the usually huge
and complex spatial data processing and storage systems,
and to provide simulation programs with a way to
retrieve and store configuration data without having to
physically move the archives from where they are stored,
and without having to deal with translating GIS file for-
mats. Such a mechanism is currently possible on the
same host where the GIS system is located, by linking
in proprietary APIs to systems such as Arc-INFO (ESRI,
URL) or GRASS (OGF, 1994).

The SNI offers a clean and particularly easy solution
to this need by allowing remote access to the GIS
through a specially written, command-line based pro-
gram following the rules for SNI compliance outlined
above. We are testing a module for GRASS that allows
retrieving, modifying and processing data stored in a
GRASS database, to be used as an SNI model on a
machine where GRASS is available. The module works
through a command-line interpreter which can be run by
either a human operator or the SNI server. Compared to
the standard GRASS command-line interpreter, the SNI
GRASS module just adds commands to output the spa-
tial data in a convenient encoding for efficient trans-
mission to the SNI server. In this simple form, simul-
ation programs can connect to a site where the GRASS
interface has been installed as an SNI project, and use
the system transparently, through SNI client calls

embedded in a GRASS interface library, to retrieve or
store data and to invoke processing services. The system
can be used in the same way by simulation programs or
by remote graphical interfaces to the GRASS system,
either stand-alone or web-based.

The GRASS SNI driver is under development and will
be made available through the GRASS contributed code
repository or by contacting the first author.

3.3. A remote model calibration service

An aspect that is central to the development of useful
models is parameter optimization. Many complex optim-
ization techniques are available but their implementation
requires very specialized skills and powerful compu-
tational resources. As a result, many sophisticated mod-
els used in ecological research are still calibrated by trial
and error, with a high chance of losing most of the inter-
esting range of dynamic behaviours that a complex
model can show across the parameter space. Standardiz-
ation of model evaluation techniques and availability of
centralized optimization services are much needed con-
ditions for a systematic adoption of formal calibration,
which is necessary to avoid under-utilization of the
power and sophistication of the current generation of
environmental models (Villa and Costanza, 2000).

The SNI architecture is being used in the development
of network-based calibration services, which can be
accessed by any simulation program driven by the SNI
server. In the calibration service we are implementing,
a server machine runs remote simulation programs
according to the specifications sent by the user of the
service and implementor of the program. The latter has
to specify the following by filling in a web-based form:

O The network location or values of the calibration ref-
erence data.

O The calibration criteria, expressed as an on-line defi-
nition of an objective function based on our Model
Performance Index (MPI: Villa, 1997a).

O The commands to be sent to the SNI server in order
to start the simulation model, set parameter values,
run for the necessary amount of time, and retrieve the
output data necessary for calibration.

O The names and ranges of the parameters the user
wants calibrated.

The calibration program is then invoked by submitting
the web-based form. The user is presented with a control
page through which a variety of calibration algorithms
can be selected and configured. These include genetic
algorithms (GA) for global optimization and hill-climb-
ing local search techniques to improve on the GA esti-
mates. The calibration results consist of sets statistics
and parameter sets, which are presented in a separate
frame appearing in a web browser. Each final set of para-



176 F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

meters is given an ID and stored on the server side, so
that the user can select a particular set as the starting
point of a different calibration run.

The generality allowed by the adoption of the SNI
interface and a standardized definition of the objective
function allows access to calibration services without
having to write optimization programs on purpose. All
that is needed is to make one’s program compliant with
the SNI by providing it with a simple command-line
interactive interface. A prototype of this network-based
simulation service is being developed by the first author,
to whom inquiries on future availability should be
directed.

4. Conclusions and perspectives

In its simplicity, the SNI interface provides an effec-
tive answer to the need to integrate different modelling
tools allowing potentially different modelling paradigms
to interoperate. As discussed, this approach has multiple
benefits for environmental research, from the added
potential in developing ideas involving collaborative use
of independent research products to the side benefit of
allowing old approaches to be reconsidered and re-evalu-
ated in a fresh, collaborative context.

We have argued that a realistic perspective on the use
of integrating modelling tools calls for an easy-to-use
approach which does not require modellers to: (1) recode
existing models; (2) learn complex software interfaces;
and (3) be forced to adopt specific modelling approaches
and description languages. While we believe that all of
these issues, and in particular the definition of an inter-
operable semantics to address multi-paradigm problems,
are urgent and important research topics, we do not see
in this approach a ready solution to the problem of cre-
ating multi-paradigm models. With these needs in mind,
we have developed the SNI architecture which offers a
maximum of flexibility with a minimum of development
cost and requires only basic programming and system
managing skills to implement. We have shown how it
can be used to solve problems and develop approaches
that are currently in demand.

The concept of an integrating environment to drive
and connect running simulations can be expanded to
higher levels of user abstraction to implement graphical
integrating tools using familiar interface concepts. The
SNI environment for the Collaborative Modelling
Environment (CME: Villa, 1997b; Voinov et al., 1999)
is being developed as a generic graphical front-end to
any SNI workspace, allowing the creation of custom
graphical interfaces for each SNI-compliant modelling
tool, and the storage of their description on web-access-
ible repositories. This will allow us to expand the poten-
tial even further: as soon as new interfaces for simulation
tools are developed, their CME-based interfaces can be

made public and retrieved automatically by the software.
We see these research efforts as steps towards a higher
level of integrated, multi-paradigm ecological modelling.

Acknowledgements

The Swarm/SME integration classes have been
developed with support by the U.S. Army grant
DACA88-98-M-0232. The Simulation Network Inter-
face has been developed in the context of the NSF
784AT-31057A PACI Alliance project, Subaward #784.
Thomas Maxwell and an anonymous referee provided
helpful comments and suggestions. Thomas Maxwell
also wrote the Java SNI client API.

References

Anon., 1994. Grass 4.1 User’s Manual. Open GRASS Foundation
(OGF).

Costanza, R., Sklar, F.H., White, M.L., 1990. Modelling coastal land-
scape dynamics. BioScience 40, 91–107.

Costanza, R., Duplisea, D., Kautsky, U., 1998. Ecological modelling
and economic systems with STELLA — introduction. Ecological
Modelling 110, 1–4.

DeAngelis, D.L., Gross, L.J. (Eds.), 1992. Individual-based Models
and Approaches in Ecology: Populations, Communities, and Eco-
systems. Chapman & Hall, New York.

ESRI (URL) ArcInfo. http://www.esri.com/software/arcinfo/
index.html.

Foster, I., Kesselman, C., 1997. Globus: a metacomputing infrastruc-
ture toolkit. Supercomputer Applications 11, 115–128.

Fritzson, P., Engelson, V. (URL) Modelica — a unified object-oriented
language for system modelling and simulation.
http://www.ida.liu.se/~vaden/paper/modelica/index.html.

Harold, E.R., 1998. XML: Extensible Mark-up Language. IDG Books
Worldwide, Foster City, CA, USA.

Langton, C., Burkhart, R., Daniels, M., Jojic, V., Lancaster A. (URL).
The Swarm Simulation System. http://www.santafe.edu/projects/
swarm

Lutz, M., 1996. Programming Python. O’Reilly and Associates, Sebas-
topol, CA, USA.

Maxwell, T., Costanza, R., 1997a. A language for modular spatio-tem-
poral simulation. Ecological Modelling 103, 105–113.

Maxwell, T., Costanza, R., 1997b. An open geographic modelling
environment. Simulation Journal 68, 265–267.

Maxwell, T., Villa, F., Costanza, R. (URL). Spatial Modeling Environ-
ment. http://iee.umces.edu/SME3

Minar, N., Burkhart, R., Langton, C., Askenazi, M., 1996. The Swarm
Simulations System: a toolkit for building multi-agent simulations.
Santa Fe Institute Working Paper 96-06-042. Internet:
http://www.santafe.edu/projects/swarm/swarmdoc/swarmdoc.html.

OMG (URL). Object Management Group home page.
http://www.omg.org.

Ousterhout, J.K., 1994. Tcl and the Tk Toolkit. Addison-Wesley, New
York, NY, USA.

Villa, F., 1992. New computer architectures as tools for ecological
thought. Trends in Ecology and Evolution 7, 179–183.

Villa, F., 1997a. Usage of the Model Performance Evaluation software.
Internal report, Institute of Ecological Economics, University of
Maryland. Internet: http://iee.umces.edu/~villa/svp.

Villa, F., 1997b. Usage of the Collaborative Modelling Environment.



177F. Villa, R. Costanza / Environmental Modelling & Software 15 (2000) 169–177

Internal report, Institute of Ecological Economics, University of
Maryland. Internet: http://iee.umces.edu/~villa/cme.

Villa, F., 1997c. Guide to the Spatial Modelling Environment TCL-
based command line interface. Internal report, Institute of Ecologi-
cal Economics, University of Maryland. Internet:
http://iee.umces.edu/~villa/sme tcl.

Villa, F., 1998. Stimulation Network Interface: user guide and refer-
ence manual. Internal report, Institute of Ecological Economics,
University of Maryland. Internet: http://iee.umces.edu/~villa/sni.

Villa, F., Costanza, R., 2000. Performance and goodness of fit of com-

plex simulation models: a multi-criteria approach to model cali-
bration using the Model Performance Index (MPI) framework. To
appear in: Costanza, R., Voinov, A. (Eds.), Spatial Ecosystem
Modeling. Springer-Verlag, in press.

Voinov, A.A., Costanza, R., Wainger, L.A., Boumans, R.M.J., Villa,
F., Maxwell, T., Voinov, H., 1999. Integrated ecological economic
modelling of watersheds. Journal of Environmental Modelling and
Software 14, 473–491.

Wall, L., Christiansen, T., Schwartz, R.L., Potter, S., 1996. Program-
ming Perl, 2nd ed. O’Reilly and Associates.


