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A B S T R A C T   

Threats to sustainable food production are accelerating due to climate change, population growth, depletion of 
natural capital, and global market instability. This causes significant risks to farmers, consumers, and financial 
and policy institutions. Understanding agro-ecosystems, and how varying management styles can impact their 
performance is critical to future wellbeing. To better understand and manage agricultural production, we have 
developed a dynamic simulation model that accounts for the core natural capital components of agro-ecosystems, 
including climate, soil, carbon, water, nitrogen, phosphorus, microorganisms, erosion, crops, farm animals and 
plants. Dynamic Agro-Ecosystem Simulation (DAESim) model can be used to simulate dynamics of soil health 
and project it into the future to assess vulnerabilities and resilience. This knowledge can inform and guide in
vestment decisions by financial institutions, insurance companies, farmers, and governmental agencies. Here, we 
describe the basic model structure, sensitivity, and calibration results. We then run a few scenarios to demon
strate the model’s ability to analyze alternative agro-ecosystem management options.   

1. Introduction 

In a world of increasing population and consumption, changing 
climate, and decreasing availability of arable land, there is an urgent 
need to improve and preserve the quality of agro-ecosystems. Agricul
ture has always been particularly vulnerable to extreme weather events 
and other environmental hazards. With mounting pressure from climate 
variability, soil loss, and with many uncertainties in associated param
eters and processes, threats to sustainable food production are 
increasing in frequency and intensity (IPCC Climate Change 2014; 
Shukla et al. 2019). These pose significant risks to farmers, consumers, 
and the financial and policy institutions supporting agro-ecosystems and 
concerned with food security. Risk and resilience are crucial factors in 
the management of farming systems (Meuwissen et al. 2019; Rotz and 
Fraser 2015). The growing risks are a strong incentive for the develop
ment of analytical and predictive methods to enable better-informed 
farm management. In addition to conventional ecological modelling, 
we should account for social drivers and mechanisms, which could 
potentially reward farmers for carbon sequestration and provision of 

other ecosystem services, which can offer new incentives for their sus
tainable production (Taghikhah et al. 2019). The United Nations, Food 
Systems Summit 2021 (von Braun et al. 2021) is a recent compendium of 
studies about enhancing food system resilience to vulnerabilities, shocks 
and stresses. 

Agro-ecosystems are complex, dynamic systems that operate on local 
and regional scales influenced by local, national, and global economic 
frameworks. In these systems causal relationships between system var
iables are not simple – they are affected by contextual and exogenous 
factors and by positive and negative feedback loops, time delays, and 
non-linear dynamics (Sterman 2002). Moreover, they are embedded in 
hierarchical social systems, which come with their additional un
certainties and drivers. Complex dynamic systems modelling is one 
approach capable of incorporating these features. 

A number of models have been developed to assess agricultural 
management decisions. For example, in the context of Australian 
farming, the Australian Bureau of Agricultural and Resource Economics 
and Sciences developed the Global Trade and Environment model (Pant 
et al. 2002). This is a general equilibrium model that takes the 
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inter-linkages of the economy into account, among which supplies, ac
cess and transportation costs, taxes, investor and household behaviors 
are most important. It also includes two extension modules that appraise 
the costs and benefits of multiple scenarios. However, they have not 
considered recently marketed ecosystem services (e.g., carbon seques
tration) and only focus on elements that relate directly to the traditional 
market economy. In addition, their environment module only considers 
the effects of management decisions on greenhouse gas emissions, 
without key crop and environment specific features. Another example is 
the Investment Framework for Environmental Resources model 
(INFFER) (Pannell et al. 2009; Pannell et al. 2012), which was developed 
to assess and improve conservation and other types of environmental 
projects. It calculates the impacts and opportunities for policymakers 
and businesses in order to clarify investment opportunities. However, it 
does not consider agricultural land management in its framework. As a 
third example, the Australian Stocks and Flows model, assesses the 
sustainability of the grains industry and food security under different 
scenarios of climate change, but does not include the broader contri
butions of ecosystem services to agricultural productivity and societal 
wellbeing (Dunlop et al. 2004). FARMSIM (Richardson and Bizimana 
2017) is another simulation model designed to inform decision-makers 
about the economic and nutritional impacts of various farming sys
tems. Though it can provide estimates of empirical probability distri
butions for net income for crops and/or livestock, and nutrient intake by 
the farm family, there is no information provided about ecosystem ser
vices and the health of land. 

The available models generally only cover a subset of agro-ecosystem 
types (Turner et al. 2016). There are many crop production models (e.g., 
Agricultural Production Systems sIMulator (APSIM) (Holzworth et al. 
2014)), financial risk models (Katchova and Barry 2005; Pannell et al. 
2012), and farmer behavior models (Martin et al. 2011; Robert et al. 
2016). What is missing from the range of specialized models is inte
gration. The category of natural capital incorporates a variety of other 
ecosystem services that include global climate regulation (via carbon 
sequestration), water supply, nutrient cycling, soil creation, pollination, 
recreation, and others. While these ecosystem services are vital to local 
and global populations (Carpenter et al. 2009; Costanza et al. 2014b; 
Reid et al. 2005), their dynamics and value are not fully recognized in 
most ecological models and conventional economic measures of wealth 
and productivity (Bateman et al. 2013; Costanza et al. 2014a; Dasgupta 
2008). Accurate assessment of wellbeing requires analysis of a far more 
inclusive set of indicators beyond income level and economic produc
tivity (Farley and Costanza 2010). This highlights the necessity for 
developing models that can encompass the natural and social capital 
considerations underlying individual and societal wellbeing. Further
more, farmers, bankers, and government agencies need to know the 
value of farm assets, particularly natural capital in addition to built 
capital. They also need to include responses to future climate pro
jections, along with individual performance and industry trends. 

So far, no process-based models have been developed to assess nat
ural capital on farms to maximize sustainable wellbeing (Turner et al. 
2016). Unlike the blackbox models, these models reveal the mechanisms 
and facilitate the deliberation with stakeholders to solicit their opinions. 
They can also guide the experimental/field studies in finding values for 
critical parameters. Besides, none of the existing models integrate the 
ecological cycles (e.g., water, carbon, nutrient) along with farm man
agement practices to investigate land well-being dynamically and 
simultaneously (Kenny 2017). Without having this holistic, integrative 
view on ecosystem performance, it is hard to measure the impacts of 
sustainable agriculture on farm health. These gaps give rise to the need 
to build a comprehensive model to help understand the complex con
nections between natural, social, built, and human capital, ecosystem 
functions, and services; and forecast factors affecting farm seasonality, 
sustainability, and resiliency. Such models are of utmost importance for 
farmers, major landowners, banks, and large corporations to make de
cisions about shifting from commercial exploitation to investment in 

sustainability targets (e.g., carbon sequestration and biodiversity). 
As a first step in this process, we used STELLA modelling software to 

develop a dynamic simulation model of the natural capital component in 
farm agro-ecosystems. To create this model, we synthesised, extended, 
and integrated components from several existing models of farm pro
ductivity (e.g., LHEM (Voinov et al. 2004), Century (Parton et al. 1994), 
DayCent (Parton et al. 1998), APSIM (Holzworth et al. 2014), etc.). We 
used data from an Australian agro-ecosystem to calibrate and test the 
model performance. Historical data on biophysical and environmental 
conditions were collected from publicly available geo-spatial databases 
including SoilGrid and Digital Agriculture Services. These data include 
climate, soil characteristics, erosion rates, groundcover, water quality, 
chemical inputs, and other variables. We incorporated the effects of both 
fast variables (i.e., rainfall, fertilizer application rates, and short-term 
management decisions) and slow but changing variables (i.e., soil con
ditions, climate change, long-term farming practices and groundwater) 
on the indicators of soil function/health (e.g., water holding capaci
ty/bulk density). 

The rest of the paper is organized as follows: Section 2 describes the 
model framework and method as well as the details of our case study 
Section 3. presents calibration and validation results, uncertainty anal
ysis, and findings from the model. Finally, Section 4 reports the results of 
alternative, progressive management scenarios and Section 5 derives 
conclusions, some practical and managerial perspectives, and section 6 
discusses future directions for the model and its applications. 

2. Materials and methods 

Our Dynamic Agro-Ecosystem Simulation (DAESim) model has eight 
interconnected modules that are grouped in the following three broad 
categories: (1) Climate and management; (2) Natural Capital; and (3) 
Outputs. This modular approach allows for easy integration of addi
tional modules in the future, namely human, social, and built capital. It 
is designed to explicitly account for ecosystem goods and services and 
factor them directly into the process of global economic production and 
human welfare development. In Fig. 1, we graphically show the struc
ture of the model, and the interactions among the modules. We also 
color coded the diagrams such as green variables demonstrating inputs 
and orange filled ones indicating the empirical dynamic data. Access to 
the model is available here at https://www.comses.net/codebase-releas 
e/a18a26d6-5a1d-4327-a7ec-31367939bc78/. 

2.1. Climate 

This module does not have any state variables. It is designed pri
marily to simplify data pre-processing. It encompasses variables that 
describe the climatic factors, such as precipitation, temperature, hu
midity, wind speed, solar radiation as well as day length, elevation, and 
Julian days (Fig. 2). Appendix A1 provides further details about data 
sources and unit conversions in the climate module. In this model, macro 
climate variations are considered representing climates from different 
locations. 

2.2. Management 

Agricultural management practices considered in this study are 
presented in Fig. 3. They drive short- and long-term variability in soil 
properties and processes related to water retention, crop growth dy
namics, sediment, and nutrient loss, etc. 

Farm management practices directly influence different processes 
related to nutrient availability, crop growth, soil health, and water 
retention. There are two general categories of farming practices: con
ventional and ecological. In general, conventional farming practices 
focus on near term yields and inputs. Whereas ecological farming has a 
focus on also regenerating natural capital to balance long term food 
production with ecosystem health. The potential benefits for ecological 
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practices are not only limited to carbon sequestrations and biodiversity 
preservation, but also building farming community well-being as well as 
improving farming livelihoods and the social reproduction of culture. 
More details on the convergence and divergence of agriculture practices 
and definitions are provided by Schreefel et al. (2020). Regeneration 
International summarises a list of practices that are supposed to be 
important in establishing a truly ecological and climate-resilient farm. 
Regeneration International (2018) provide more information about 

regenerative farming and their impacts on the environment . 
In DAESIM, we specifically consider a set of management practices 

such as reduced tillage, cover crops and plant residues and their impact 
on the health of ecosystem services. The values for these control pa
rameters vary between 0 and 1 indicating the fraction of land with 
conventional/conservation/no till, intensity of crop residue inputs to the 
soil, and intensity of cover crop adoption. This module allows the user to 
control other management practices in agriculture including planting, 

Fig. 1. A graphical representation of the modules in DAESim illustrating the interactions among the ecosystem functions. Rounded rectangle and arrow symbols 
represent modules and relationships, respectively. 

Fig. 2. STELLA diagram of climate module. Circles denote model parameters such as inputs, outputs, and auxiliary variables.  
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harvesting, fertilizing (including chemical fertilizer and manure 
compost) and irrigation, grazing and potential manure application. 

2.3. Natural capital 

2.3.1. Water module 
In line with the LHEM (Voinov et al. 2004) hydrologic module, the 

water module of DAESim has three state variables to mimic the vertical 
movement of water: surface water, unsaturated groundwater of soil, and 
saturated groundwater storage. It calculates the associated fluxes related 
to physical (such as evaporation, runoff, and percolation into ground
water storage) and biological (interception, infiltration into soil water, 
plant transpiration) processes to simulate the water exchange between 
the state variables (Fig. 4). Water plays a crucial role in regulating most 
of the ecosystem functions, and as such, the outputs of this module are 
used as inputs in all the other modules. It is these multiple water process 
features that distinguish DAESim from other common plant growth 
models (e.g., DAYCENT). The main function of water is to enhance plant 
growth, but also to aid decomposition by microbes and trigger the 
nutrient and mineral cycles to sustain plant life. 

Infiltration is the process by which water on the ground surface en
ters the soil. We used an established empirical model for predicting the 
infiltration rate based on soil properties (percentage of sand, silt, clay, 
and organic matter as reported in the erosion module) and moisture 
content (Patle et al. 2019). Additionally, the infiltration rate can be 
modified by the habitat type (ground cover as defined in the manage
ment module), vegetation type, and root system. Vegetation has a pos
itive influence on infiltration by increasing the rate of water penetration 
into the soil. This is key feedback that many farmers know, as estab
lishing good plant ground cover leads to a virtuous cycle by holding 
more runoff, which aids plant growth. Conversely, overgrazing and loss 
of ground cover increases runoff, erosion, and loss of plant growth. Our 
model captures these particular benefits in reducing soil erosion by 
protecting the soil surface, so water tends to infiltrate instead of running 
off. In addition, relying on the findings of Xie et al. (2020), the model 
considers the direct impact of the crop root system on the infiltration 
rate. 

The bulk density of a soil sample is estimated as the mass of the 
sample divided by the volume of the sample. When dealing with soil 
samples, the average bulk density of soil is 2 g/cm^3 (but ranges from 1- 
3g/cm^3 from topsoil to subsoil). This is a key value that is unfortunately 
not measured often enough and lacks depth and spatial resolution, 
especially as soil bulk density changes with management (Gajda et al. 

2016). Here bulk density is assumed to be the initial bulk density of soil 
samples unless otherwise specified. To monitor the changes of the bulk 
density over time, we refer to the study of Yue et al. (2017) to estimate 
the dynamics of bulk density based on soil pH and the percentage of 
organic matter, which states how bulk density goes down and organic 
matter goes up. This dynamic bulk density feedback is also a key addi
tion in DAESim that would show accelerating positive or negative 
multi-year effects on plant growth. 

Field capacity - the proportion of total soil volume capable of holding 
water - is important for measuring the dynamics of water storage over 
time. The value of field capacity changes in time depending on the 
specific yield (referring to the wilting point water) and porosity (refer
ring to the total soil volume that is taken up by the pore space) (Rab 
et al. 2011). See Appendix A2 for equations and further explanation. 

2.3.2. Plant growth module 
We developed the DAESim crop growth module using similar as

sumptions and processes to those in the LHEM plant module (Voinov 
et al. 2004) and APSIM (Holzworth et al. 2014), including net primary 
production in photosynthetic tissue, translocation to non-photosynthetic 
tissue, and decomposition (refer to Fig. 5). Photosynthetic (leaves) and 
non-photosynthetic biomass (stems and roots) are the main components 
of plant biomass and translocation moves carbon sugars from leaves to 
stems and roots. Water and nutrients are translocated from the roots and 
stems to the leaves. The module imports driving variables (solar radia
tion, day length, and min/max temperature, humidity data) from the 
climate module, nutrient availability from the nitrogen and phosphorus 
modules, and water availability from the water module to simulate the 
plant growth. Recent studies suggest that a greater allocation to root 
mass provides a greater rooting depth later in the season leading to 
drought tolerance and increased yield under water-limiting conditions 
(McNally et al. 2015). To consider this effect, we allow two genetic 
states with more or less the root biomass allocations affecting root depth 
equations. The plant module data sources are available in Appendix A3. 

2.3.3. Soil module 
We developed the soil module based on the Millennial, APSIM, and 

LHEM models. It encompasses both organic matter decomposition pro
cess and soil erosion by water (Fig. 6). The decomposition process in
cludes four state variables related to stable detritus, labile detritus, 
minerals, and microbial biomass. The inclusion of microbes serves pre
dominantly to close the nutrient and mineral cycles in the system. 
Compared to the existing models, our model adds the manure/detritus 

Fig. 3. STELLA diagram of management module.  
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Fig. 4. STELLA diagram of water cycle. Rectangular icons represent stocks (state variables) and double lines with valves icons show flows, controlled by variables 
and parameters connected to the valves by single lines. 
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Fig. 5. STELLA diagram of plant growth module.  
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Fig. 6. STELLA diagram of soil module including the decomposition process and water erosion.  
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decomposition process, calculates CO2 emissions from soil, explores the 
dynamics of microbial activities, and estimates nutrient loss due to 
water erosion. We modify the inflows of soil organic matter (SOM) to the 
stable and labile pools of carbon by adding manure/compost as a source 
of SOM. This also adds to the nitrogen pool. For example, when the 
biomass decomposes and/or is consumed by an animal and released as 
manure, part of the biomass turns into stable detritus and part is released 
as CO2. For estimating the initial amount of organic matter stock, we 
incorporated an equation using total carbon stock, proportion of carbon 
in different pools (Srivastava et al. 2016), and the conversion factor for 
estimating organic matter from soil organic carbon (Edwards 2021). 

Ecological/conservation agriculture seeks to regenerate and build 
organic matter stocks in soil to sequester carbon from the atmosphere 
(Schreefel et al. 2020). Increased soil organic matter aids water holding 
capacity and cation exchange capacity. Decomposition of biomass via 
active microbes is key to nutrient cycling. This natural decomposition 
process provides nutrients but also releases CO2 and other greenhouse 
gases. Microbial abundance and type can accelerate soil nutrient cycles 
and soil organic matter regeneration (Wang et al. 2011). The decom
position processes of stable and labile detritus are defined with 
nonlinear functions to account for the influence of microbes, humidity, 
and temperature. The level of soil moisture (from the water module) 
should be suitable for the microbes to continue to accelerate the bio
logical decomposition process. The soil temperature for microbial ac
tivities is calculated based on the average daily temperature. 

Microbes consume a proportion of plant matter for growth and 
release organic matter when they break them down, shifting carbon 
from the labial to the stable pool. Various microbe types have different 
growth rates, consumption rates, decomposition rates and survival rates 
in times of stress. In this model, however, due to the unavailability of 
empirical data, we simplify the process and consider microbes as one 
aggregate group. So, we assume these rates to be identical for all soil 
microbes. This is a reasonable assumption since soil microorganisms can 
decompose organic matter, cycle nutrients, and fertilize the soil only as 
part of the microbial community (Johns 2017). 

Stable and labile detritus can be lost through the process of oxidation 
to CO2 and leaching as dissolved organic carbon. The amount of litter 
and detritus returned to the soil depends on the leaf biomass and amount 
harvested with the rate of decomposition influenced by mechanical 
incorporation and tillage. Selection of farming methods can influence 
the rate of oxidation process. In conventional farming, losing carbon- 
rich organic matter from soils can happen at a higher rate, releasing 
the carbon captured by photosynthesis. The loss of stubble also results in 
increased evaporation. This effect is reflected in the soil oxidation rates 
in the model. We used the Universal Soil Loss Equation (USLE) 
(Wischmeier and Smith 1978), one of the most widely used models for 
estimating daily soil erosion in cropland. This model uses four factors, 
including: Soil Erodibility Factor (K), Slope Length and Steepness Factor 
(LS), Cover Management Factor (C), and the Support Practice Factor (P), 
for predicting soil loss (See Fig. 6). In the original model, these factors 
are assumed to be constant in time. However, as farming practices and 
land management decisions can indirectly affect the values of K and C, 
we modify USLE to account for these effects. 

Soil erodibility factor, K, represents runoff rate and soil susceptibility 
to erosion events. To account for the dynamics of K, we use the findings 
of Wischmeier and Smith (1978) and Renard and De Marsily (1997) 
about the influence of SOM, bulk density, and permeability on the soil 
erodibility factor. Regarding the C factor dynamics, we include the in
fluence of land use and management on reducing the soil loss rate. The 
loss of topsoil due to erosion events is reflected in the model. Further 
explanations about the soil module are available in Appendix A4. 

2.3.4. Nutrient module 
We incorporated the nutrient cycle defined in GEM (Panagos et al. 

2014) to simulate the dynamics of nitrogen (Fig. 7) and phosphorus in 
topsoil (Fig. 7). We considered four major sources of nitrogen in the 

system, including atmospheric deposition, fertilizer application, natural 
decomposition of organic material, and manure. N is provided via the 
manure decomposition process, but soluble N is also lost to denitrifi
cation. N fixation by legumes or free-living N fixing microbes eating 
detritus is included. Nitrogen fixation is the amount of atmospheric ni
trogen that is converted to soluble forms such as ammonia by enzymes to 
be ready for plant uptake. Denitrification is the process that converts 
nitrate to nitrogen gas (N2, N2O and NO2), thus removing bioavailable 
nitrogen and returning it to the atmosphere. We use the study of Holz
worth et al. (2014) for defining the nitrification process. In DAESim, the 
incoming fluxes of phosphorus are the same as nitrogen fluxes except for 
the nitrogen fixation and denitrification processes Fig. 8. 

The nutrient cycle outflows are based on the hydrologic fluxes 
calculated in the water module as well as net primary productivity 
defined by the plant module. For estimating the nutrient levels, GEM 
and LHEM closely follow the water fluxes and measure plant available 
nutrients on the surface, in the unsaturated storage, and the saturated 
layer. Our model currently focuses only on the nitrogen and phosphorus 
stored in the upper soil layer that is available for plant uptake. Thus, the 
vertical transportation of nutrients, as well as the sorption process, are 
excluded from the model analysis and replaced by two equations. The 
first one measures the amount of nutrients that can be carried away in 
moving water. The second equation refers to nutrient leaching, the 
downward movement of dissolved nutrients in the soil profile with 
percolating water. The nutrients in the surface storage are assumed to be 
available for plant uptake when there is water in surface soil or when the 
water is available to the plant root system to dissolve them. This 
assumption allows us to monitor the availability of nutrients for plant 
growth. Further details for the nutrient module can be found in Ap
pendix A5. 

2.3.5. Livestock module 
At present, this module predominantly feeds into the nutrient and 

soil modules in the system but does not go into all the details of livestock 
rotations (such as animal movement), the economic (e.g., profitability 
for farmers) and social (e.g., food security) considerations. Demographic 
composition and the availability of feed and water are important de
terminants for analyzing and understanding the dynamics of livestock 
populations. We consider the seasonal fluctuations in the number of 
births (Birth) and deaths (Death) of animals, depending on the popula
tion and gender, while the influence of animal age on the dynamics of 
the population is excluded. 

Factors such as the availability of feed and water can influence the 
fertility rate. Regarding the risk factors associated with animal mortality 
(mortalityRate), we only consider the influence of drought and ignore 
the role of other factors such as disease and age. Note that we did not 
consider the different nutrient aspects of feedstock. The trade of live
stock depends on whether there is enough feed and water available, and 
the minimum number of animals on the farm. Manure (in this study 
refers to animal waste) is an inevitable by-product of livestock produc
tion. It is a valuable material that can be used as a source of organic 
material and fertilizer for crops and pasture. We define the composition 
of manure as excreted material from the animal faeces and urine only 
and exclude the amount of bedding used for manure collection. In our 
case, the quantity of manure depends on the animal’s weight. It is to be 
noted that the livestock module takes inputs from the plant growth and 
water modules. The impacts of different grazing techniques and their 
pressures on land were not the focus of this study and were left out of 
this module. Further details are available in Appendix A6. 

2.4. Assessment 

Soil health assessment is defined by measuring the biological, 
physical, and chemical functionalities of soil as a living system to inform 
land management decisions and ensure nutrition security, environ
mental quality, as well as climate change resilience (Maikhuri and Rao 
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Fig. 7. STELLA diagram of nutrient cycles.  
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2012). In this module, we aim to introduce a set of measurable soil 
parameters to indicate the effectiveness of farming management prac
tices and quantify their efficiency (Fig. 9). Comprehensive lists of in
dicators, their definitions and references are provided in the study of 
Bennett et al. (2010) and Karlen et al. (2019). The selected soil health 
indicators for this study include the following factors. 

The importance of soil structure and fertility is presented in  

• Carbon stock: the total carbon in soil, mineral, labile and stable 
detritus (linked to the soil module);  

• Soil organic carbon: the percentage of organic carbon in soil (linked to 
the soil and erosion modules);  

• Soil erosion potential: the amount of soil eroded (linked to the erosion 
module);  

• Crop yield: farm production (linked to plant module); 

Microbial activity and potentials of nutrients to support plant 
development are reflected in  

• Fungal microbes: the microbial biomass (linked to the soil module);  
• Phosphorous: The total amount of phosphorus in the topsoil (linked to 

the phosphorous and erosion modules);  
• Nitrogen: The total amount of nitrogen in the topsoil (linked to the 

nitrogen and erosion modules). 

The water retention, moisture to support plant growth and pollutants 
are measured in 

• Water quality: total nitrogen concentration in surface water to indi
cate potential water pollution (linked to the water and nitrogen 
modules);  

• Water quantity: the total amount of water a soil can hold at field capacity 
(linked to the water modules). 

The main objective is to maximize the ecosystem health, which can 
be only achieved through finding a balance between soil water, nutri
ents, structure, and production. Finding the optimality in this case is a 
challenging task as, for example, an increase in the amount of nutrients 
(e.g., nitrogen and phosphorus indicators) can cause water pollution 
problems (in conflict with the water quality indicator). 

In this study, we avoided indicator aggregation to provide users with 
the flexibility of selecting indicators of interest to be included in their 
soil health assessment and land management decision-making. In the 
future, we can use interactive multi criteria analysis methods to aggre
gate all these indicators for a more general and understandable 
ecosystem service assessment. 

3. Sensitivity, calibration and validation 

3.1. Sensitivity 

To assess the model sensitivity, we use the one-factor-at-a-time 
(OFAT) method in which each parameter is varied solely utilizing a 
range from minimum to maximum of the possible value from the 
STELLA model, divided into 50 runs. For each value, the resulting ab
solute change in the outputs is compared to the baseline. We categorize 
parameters as highly sensitive, averagely sensitive, and low sensitive 
parameters. Overall, the soil module has the highest sensitivity, whereas 
the phosphorus module has the lowest sensitivity (see Appendix B1). 

3.2. Calibration 

Calibration is a vital step in tuning the model to reproduce empirical 

Fig. 8. STELLA diagram of livestock dynamics.  
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data by adjusting the values of unknown and sensitive model parameters 
within the ranges of accepted values. There is a set of data related to 
plant, water, and erosion dynamics available in geospatial databases 
that can be used for this purpose as described below. We selected the 
Woodstock (long season) wheat farm in New South Wales, Australia 
(-33.715014, 149.071208) as the case study site. The data are collected 
by the National Variety Trials (NVT) program on a yearly basis, to assist 
Australian grain growers in varietal decision making. The trail sites are 
chosen in consultation with stakeholders (agronomists, growers, etc.) to 
represent soil types, crop prevalence, and environments within a region. 
Contracted providers sow, maintain and harvest the Woodstock trial site 
and assure that no limiting factors such as nutrition or disease affect the 
results of experiments. Complementary information about the NVT 
program can be found here. We ran the model over the period of 
Jan2018to Jan2020. The list of DAESim input parameters and their 
values is available in Appendix B2. 

For the Plant module calibration, we collected dry matter produc
tivity (DMP) data from the Copernicus Global Land Service for every 10 
days and converted it to daily NPP data (using DMP*0.45*0.1/1000) to 
match the model time step. Besides, LAI data are collected from the same 
database and scaled (values are divided by 40) to be consistent with the 
model parameter Fig. 10. shows that the simulated NPP and LAI are 
replicating the empirical data quite closely. The spring and autumn 
growing seasons increase in leaf area and net photosynthetic produc
tivity, with decreases in dry summers and colder winters. This shows the 

carbon capture and translocation potential of the plants to soil and to 
yield. 

For calibrating the soil module, we focus on estimating different 
pools of carbon in soil - labile, mineral, and stable - and microbial 
biomass. According to Srivastava et al. (2016), the SOM consists 
approximately of 10% labile (active), 40-80% stable (slow) and 10-50% 
mineral (passive) detritus, with differential turnover rate ranging from 
months to over several hundred to thousands of years. We multiplied 
these proportions in the amount of SOM collected from SoilGrid. 
Regarding microbial biomass, we rely on the empirical findings of Bas
tida et al. (2021) to estimate the initial number of microbes in the soil, as 
well as their reproduction and death rates Fig. 11. compares the 
empirical and model generated dynamics of microbes. 

We calibrate the evaporation and transpiration in the water model. 
The required data are collected from the Australian Bureau of Meteo
rology website. To be directly used for calibration, we make the units of 
data consistent with the units of the model variables (the units of 
evaporation and transpiration data are divided by 1000) Fig. 12. dem
onstrates the model can replicate the values and trends observed in the 
empirical data. 

We use the amount of nitrogen and phosphorus reported by NVT 
program to calibrate the total nitrogen and phosphorus in the topsoil. In 
the erosion module, we tune the value of soil permeability to make the 
calculated erodibility factor (K) as close as possible to the value of K 
collected from the Maps of Australian soil loss by water erosion derived 

Fig. 9. STELLA diagram of farm health assessment.  
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using the RUSLE. The difference between calculated and empirical K is 
less than 0.01. 

3.3. Validation 

After the model calibration with available data, the model delivers 
an overall assessment of the soil health as presented in Fig. 13 Table 1. 
lists the errors of the simulation when compared to data for some main 
variables of the model. Note that the errors are calculated based on 3- 
year averages for the reported variables. 

With regards to the microbe indicator, the estimated microbial 
biomass (on average 25 g/m2) and its dynamics in time are consistent 

with the microbial biomass (23 g/m2 in topsoil) reported by Soil Quality 
Organization. Looking into NVT reports (2017-2019) for Woodstock, the 
predicted annual wheat yield (0.6-0.7 kg/m2), total nitrogen (35 g/m3), 
and total phosphorus (25 g/m3), and percentage of soil organic carbon 
(1.8%) are completely in line with the measured values in Woodstock 
(0.644-0.675 kg/m2 yield, 40-60 g/m3 nitrogen, 20-30 g/m3 phos
phorus, and 1.2-1.9% organic carbon). The estimated total carbon stock 
at around 48000 g/m2 agrees with the values reported by SoilGrids at 
46000 g/m2. Comparing the annual average of erosion rate (4 g/m3) 
with the data collected from CSIRO Data Access Portal (Maps of 
Australian soil loss by water erosion) (3 g/m3), we observe a high ac
curacy in the erosion predictions (estimation error less than 5%). 

Fig. 10. Comparing the empirical data of NPP and LAI with those calculated by the model.  

Fig. 11. Comparing the microbial biomass dynamics calculated by the DAESim model and empirical equation derived by Bastida et al. (2021).  
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Besides, a comparison between the estimated root depth and the 
empirical data from the literature (Thorup-Kristensen et al. 2009) shows 
that the simulation model can estimate the depth of the wheat crop with 
high accuracy within the ranges (between 1 and 2 meters) reported by 
Lilley and Kirkegaard (2016) and Kirkegaard and Lilley (2007). We also 
compare the estimated and empirical values of soil moisture (from 
Copernicus Global Land Service) to check the validity of the water 
module further. As shown in Fig. 14, the simulation model can estimate 
the dynamics of moisture level with high accuracy and indicate that in 
very wet years, soil is saturated all the time and there is no benefit of 
irrigation. 

4. Scenario analysis: alternative farming practices 

4.1. Scenario description 

This subsection outlines the scenarios, from climate change to 
management options regarding agriculture Table 2. lists the parameters 
that are changed in each scenario and their associated values. For the 
purpose of this initial study, we only consider the scenario of changing 
farming practices and exclude possible climate scenarios (it is not being 
treated in this paper). In conventional farming, losing carbon-rich 
organic matter from soils can happen at a higher rate, accelerating 
climate warming. But by regenerating, rehydrating, and covering soils, 
farmers sequester more carbon underground. For conducting the model 
experiments, we changed the variables of the management module 
assuming all the other model parameters stayed the same. In scenario 1 
(Run 1), the farmer uses recommended fertilizer rates for the reference 
crop, and conventional management practices (conventional tillage, low 
intensity cover crop, and low amount of crop residues) to achieve higher 

yield. In scenario 2 (Run 2), the farmer applies the same fertilizer but 
switches to conservation practices by applying conservation tillage, 
leaving higher residues on the land, and keeping the land covered with 
all-season crops. 

4.2. Scenario result 

We run the model for 10 years and compare the scenarios. The results 
in Fig. 15 show that in the conservation farming scenario, all soil health 
indicators perform better than in the conventional scenario; though 
compared to the conventional farming, the yield drops slightly in the 
first few years, and it bounces back to the initial state in the later years. 
No-till farming minimizes soil disturbance, while cover cropping, and 
residue adoption retain water and rehydrate land. Hence, they are ex
pected to build healthier, more structurally stable, and resilient soil for 
plants. 

Changing tillage practices was shown to significantly increase levels 
of soil organic carbon (from 1.4 to 1.6% in 10 years) and soil microbes 
(18 to 26 g/m2 in 10 years) over time. This is in line with other studies 
that have shown that a combination of reduced tillage, cover cropping, 
and stubble retention can increase soil organic carbon by up to 10-20% 
after less than 10 years (Institute 2014). This result thus predicts the 
potential of the conservation scenario, in which we observe a 14% in
crease in soil organic carbon, with minimal yield losses. 

Another critical management factor in conservation farming is the 
strategic use of crop rotation and cover cropping. It can effectively 
protect soil from erosion and preserve the nutrient levels for successful 
plant growth (Bolinder et al. 2020). It also helps balance soil nutrients 
(about 20% increase in topsoil nitrogen and phosphorus) and build a 
diverse SOM. The other influential practice used to help maintain and 

Fig. 12. Comparing the empirical data of evaporation with those calculated by the model.  
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support soil biology is residue mulching and retention. Leaving plant 
residue evenly across the ground serves as mulch protecting the soil and 
supporting the fungal relationships essential for nutrient uptake and 
carbon sequestration. In this case, a higher level of soil moisture (5% 
more) was observed. From our analysis, we conclude that a combination 
of conservation farming practices reduces the risk of soil erodibility 
(from 3.2 to 1.2 g/m3 in 10 years) due to the reduction in C factor 
(-42%) and increase in percentage of soil carbon. The changes observed 
in the C factors are in line with Panagos et al. (2015) estimations of C 
factors decrease due to management practices in a 10 year period. 
Hence, using soil conservation as the entry point can considerably 
contribute to multiple ecosystem services. 

5. Discussion and conclusions 

Soil naturally stores carbon but if its carbon is exposed to oxygen in 
the atmosphere, it transforms into carbon dioxide, and is lost from soil 
contributing to the greenhouse gas emissions that warm the planet. 
Conservation farming is a set of practices that aims to regenerate soils 

and at scale ultimately help to compensate for historical farming emis
sions and reverse climate change by drawing more carbon from the at
mosphere. We have built an integrated, dynamic simulation model of an 
agro-ecosystem that includes a range of variables potentially affecting 
the short and long-term behavior of natural capital including carbon 
dynamics and other ecosystem functions and services. It is a synthesis 
and expansion of several previous and ongoing agro-ecosystem 
modeling efforts and is intended to be applicable worldwide. The 
model runs on a daily time step and has been calibrated with historical 
data for a farm in New South Wales, Australia. 

It is important to compare the structure of DAESim with other pop
ular agriculture models. For example, consider APSIM, which is a well- 
known modelling and simulation tool for farming systems. It contains a 
set of modules including plant, animal, soil, and climate to simulate 
systems for a diverse range of practices (Holzworth et al. 2014). Both 
DAESim and APSIM explicitly simulate water, nitrogen, and soil cycles. 
Looking into the details of APSIM’s soil and nitrogen modules, we note 
that soil microbes and their role in decomposing organic matter, cycling 
nutrients, and fertilizing the soil are not included. Despite the vital role 
of microbes in carbon storage and land sustainability, little is known 
about their biodiversity, interactions within an ecosystem, or factors 
affecting their growth/degrowth. As a result, they are also rarely 
considered in simulation models. The Millennial model, developed by 
Abramoff et al. (2018), is one of the very few models that incorporated 
microbial processes in soil organic matter predictions. With regards to 
the soil modules, DAESim is conceptually different from Millennial, and 
considers microbial pools as measurable entities in the soil, directly 
influencing the decomposition rate. 

Fig. 13. Woodstock soil health as assessed by DAESim.  

Table 1 
Simulation errors for validation variables.  

Variable Error Variable Error 

Microbial biomass Less than 10% Soil organic carbon Less than 5% 
Yield Less than 1% Total carbon Less than 5% 
Phosphorous Less than 20% Erosion rate Less than 5% 
Nitrogen Less than 20%    
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GUMBO (Boumans et al. 2002) and MIMES (Boumans et al. 2015) are 
two other relevant models. These models focus on the interactions be
tween ecosystem service functions and human activities at local and 
global scales, yet they have not been modified to value ecosystem ser
vices in farm systems. They have been designed to examine the eco
nomic, social, and ecological effects of different actions through various 
temporal and spatial lenses, whereas our model specifically focuses on 
the impacts of farm management decisions on the natural capital 

Fig. 14. Comparing the empirical and simulated values of soil moisture over 2.8 years  

Table 2 
The list of parameters and their values changed in each scenario.   

Intensity of tillage Intensity of cover crop Intensity of residues 

Scenario 1 5 1 1 
Scenario 2 3 3 3  

Fig. 15. A comparison between the influence of conventional (blue/solid-Run1) with conservation (red/dotted-Run2) farming practices on soil health indicators. In 
the conventional scenario, t here are clear downward trends in the carbon stock, microbial biomass, and water holding capacity. 
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well-being in the long-term. It has the capacity to present various sce
narios in climate change and land management change, demonstrating 
the trade-offs between health indicators. 

DAESim has important implications for both theory and practice. 
From a theoretical perspective, it can significantly advance under
standing and management of agro-ecosystems. It provides a platform for 
engaging various stakeholders ranging from ecological experts to policy 
makers and farmers., This model uses data from spatial databases, high- 
resolution observation platforms, other online sources and literature. It 
can also be used as part of an integrated mobile application that can be 
user-friendly and easily used by and transferred to stakeholders. This 
will improve resilience, long-term prosperity, and well-being for 
farmers, bankers, and society as a whole. It incorporates social/con
servation farming system scenarios to evaluate and forecast potential 
outcomes. It addresses soil and water science and research priorities by 
providing a modelling framework across the soil-atmosphere-water 
system. It also enhances understanding of the sustainable limits for 
productive use of soil, freshwater, river flows and water rights, and 
developing solutions for restoration and remediation of soil and water. 

This tool can also support financial institutions, insurance com
panies, and government agencies for decision-making. It allows farmers, 
bankers, and land managers to improve the value assessment of natural 
capital assets on farms and make more-informed investment decisions. 
The model assists banks, development agencies, and investors in 
developing new mechanisms that incorporate more accurate natural 
capital measures by understanding and quantifying its contribution to 
farm productivity and financial risk. It has the potential to help banks 
better account for the risks incurred when providing loans to farmers. By 
improving the ability of farmers to produce consistent financial perfor
mance and a more reliable source of income, the model would generate a 
lower-risk profile and more dependable interest payments on their 
loans. It addresses the Australian government’s priorities around low 
emissions technologies - DISER 2020 (Government 2020)- by providing 
a carbon modeling framework across the soil-atmosphere-water system. 
It also allows governments to track their international pledges and tar
gets (Höhne et al. 2017) by understanding the carbon sequestered and 
emitted by their soils. Additionally, it explores the influence of key le
vers for transitioning to ecological agriculture including increasing 
financial investment in regenerative farmers and reforming crop insur
ance to incentivize regenerative practices that regenerate soil as natural 
capital. 

6. Future research 

This study suggests several potential directions for future research. 
Firstly, the model is generic enough to be used for soil health assessment 
of any arable land used for cultivating wheat (which is also used as feed 
for livestock). With minor modifications, the model can be easily 
adapted for other crops (such as barley, lentil, and pasture) as well as 
woodland-grassland ecosystems (such as forest and tropical savannah). 
Secondly, the model validation process was not straightforward and can 
certainly be improved in the future, as more field data related to soluble 
nitrogen, and phosphorus becomes available, and the model undergoes 
further calibration, validation, and testing. Thirdly, the model can be 
implemented in a spatially explicit way for investigating landscape scale 
dynamics (Costanza and Voinov 2003). 

Moreover, the structure of the model is fixed and deterministic, 
which makes it less useful when dealing with large uncertainties and 
major changes in the structure of the system. Future versions can take 
into account the uncertainties in the equations and convert this model 
into an adaptive system to respond to the changes in the environment. 
Micro and macro climate variation can be considered by varying the 
inputs either as a grid of related climate vectors within a landscape or as 
a set of variables representing climates from different locations, past and 
future conditions. One might also think of other complementary 
ecosystem functions and processes that are not reflected in DAEsim such 

as grazing, wind erosion, etc. The model can be used in future to explore 
the influence of key levers for transitioning agriculture to regenerate 
soils including increasing financial investment in soil carbon. A multi- 
objective optimization model can help with the farm management de
cisions under different climate conditions and environmental con
straints. The model can be used in participatory workshops to engage a 
range of stakeholders in understanding the complex dynamics of agro- 
ecosystems and improving the model structure and function. Finally, 
the model can be the basis for an interactive gaming system that would 
allow a broad range of users to experiment with alternative management 
strategies. 
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Pant, H., Tulpulé, V., & Fisher, B. (2002). The Global Trade and Environment Model. 
Parton, W.J., Hartman, M., Ojima, D., Schimel, D., 1998. DAYCENT and its land surface 

submodel: description and testing. Global Planet. Change 19 (1–4), 35–48. 
Parton, W.J., Ojima, D.S., Cole, C.V., Schimel, D.S., 1994. A general model for soil 

organic matter dynamics: sensitivity to litter chemistry, texture and management. 
Quantitative modeling of soil forming processes 39, 147–167. 

Patle, G.T., Sikar, T.T., Rawat, K.S., Singh, S.K., 2019. Estimation of infiltration rate from 
soil properties using regression model for cultivated land. Geology, Ecology, and 
Landscapes 3 (1), 1–13. 

Rab, M., Chandra, S., Fisher, P., Robinson, N., Kitching, M., Aumann, C., Imhof, M., 
2011. Modelling and prediction of soil water contents at field capacity and 
permanent wilting point of dryland cropping soils. Soil Research 49 (5), 389–407. 

Regeneration International. (2018). Regenerative Farming: Single Solution to a World of 
Problems? Retrieved from https://regenerationinternational.org/2018 
/05/04/regenerative-farming-single-solution-world-problems/. 

Reid, W.V., Mooney, H.A., Cropper, A., Capistrano, D., Carpenter, S.R., Chopra, K., 
Hassan, R., 2005. Ecosystems and human well-being-Synthesis: A report of the 
Millennium Ecosystem Assessment. Island Press. 

Renard, P., De Marsily, G., 1997. Calculating equivalent permeability: a review. Adv. 
Water Res. 20 (5–6), 253–278. 

Richardson, J. W., & Bizimana, J.-C. (2017). Agricultural Technology Assessment for 
Smallholder Farms in Developing Countries: An Analysis using a Farm Simulation Model 
(FARMSIM). Retrieved from. 

Robert, M., Thomas, A., Bergez, J.-E., 2016. Processes of adaptation in farm decision- 
making models. A review. Agronomy for sustainable development 36 (4), 1–15. 

Rotz, S., Fraser, E.D., 2015. Resilience and the industrial food system: Analyzing the 
impacts of agricultural industrialization on food system vulnerability. Journal of 
Environmental Studies and Sciences 5 (3), 459–473. 

Schreefel, L., Schulte, R., de Boer, I., Schrijver, A.P., van Zanten, H., 2020. Regenerative 
agriculture–the soil is the base. Global Food Security 26, 100404. 

Shukla, P., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H., Roberts, D., . . . 
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